[1] 王泽文. 基于振动信号的滚动轴承故障诊断与预测系统研究[D]. 徐州: 中国矿业大学, 2014.
[2] 陈剑, 庄学凯, 吕伍佯, 等. 基于IVMD和马田系统的滚动轴承故障检测方法[J]. 计量学报, 2019, 40(6): 1083-1087.
Chen J, Zhuang X K, Lv W Y, et al. Fault Diagnosis of Rolling Bearing Using Mahalanobis-Taguchi System Based on IVMD[J]. Acta Metrologica Sinica, 2019, 40(6): 1083-1087.
[3] 汪朝海, 蔡晋辉, 曾九孙. 基于经验模态分解和主成分分析的滚动轴承故障诊断研究[J]. 计量学报, 2019, 40(6): 1077-1082.
Wang C H, Cai J H, Zeng J S. Research on Fault Diagnosis of Rolling Bearing Based on Empirical Mode Decomposition and Principal Component Analysis.[J]. Acta Metrologica Sinica, 2019, 40(6): 1077-1082.
[4] 金梅, 李盼, 张立国, 等. 基于EEMD模糊熵和GK聚类的信号特征提取方法及应用[J]. 计量学报, 2015, 36(5): 501-505.
Jin M, Li P, Zhang L G, et al. Signal feature extraction method and application based on EEMD fuzzy entropy and GK clustering[J]. Acta Metrologica Sinica, 2015, 36 (5): 501-505.
[5] 孟宗, 岳建辉,邢婷婷,等. 基于最大幅值变分模态分解和均方根熵的滚动轴承故障诊断[J]. 计量学报, 2020, 41(4): 455-460.
Meng Z, Yue J H, Xing T T, et al. Rolling Bearing Fault Diagnosis Based on Maximum Amplitude Variational Mode Decomposition and Root Mean Square Entropy[J]. Acta Metrologica Sinica, 2020, 41(4): 455-460.
[6] Frei M G, Osorio I. Intrinsic Time-Scale Decomposition: Time—Frequency—Energy Analysis and Real-Time Filtering of Non-stationary Signals[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 2007, 463(2): 321-342.
[7] 钟先友, 赵春华, 陈保家, 等. 基于改进的本征时间尺度分解和基本尺度熵的齿轮故障诊断方法[J]. 中南大学学报, 2015, 46(3): 870-877.
Zhong X Y, Zhao C H, Chen B J, et al. Gear Fault Diagnosis Method Based on Improved Eigentime Scale Decomposition and Basic Scale Entropy[J]. Journal of Central South University, 2015, 46 (3): 870-877.
[8] 杨宇, 李杰, 潘海洋, 等. VPMCD和改进ITD的联合智能诊断方法研究[J]. 振动工程学报, 2013, 26(4): 608-616.
Yang Y, LI J, Pan H Y, et al. Research on The Joint Intelligent Diagnosis Method of VPMCD and Improved ITD[J]. Journal of Vibration Engineering, 2013, 26 (4): 608-616.
[9] 程军圣, 李海龙, 杨宇. 改进ITD和能量矩在齿轮故障诊断中的应用[J]. 振动、测试与诊断, 2013, 33(6): 954-959.
Cheng J S, Li H l, Yang Y. Application of Improved ITD and Energy Moment in Gear Fault Diagnosis[J]. Vibration, Test and Diagnosis, 2013, 33 (6): 954-959.
[10] 艾延廷, 董欢, 田晶. 一种航空发动机中介轴承故障诊断方法[J]. 机械设计与制造, 2018,(10): 157-160+164.
Ai Y T, Dong H, Tian J. A Fault Diagnosis Method of Aeroengine Intermediate Bearing[J]. Mechanical Design and Manufacturing, 2018, (10): 157-160 + 164.
[11] 张少波, 张海霞. 基于IITD样本熵和支持向量机的齿轮故障诊断方法[J]. 机械设计与制造, 2017,(12): 212-215, 219.
Zhang S B, Zhang H X. Gear Fault Diagnosis Method Based on IITD Sample Entropy and Support Vector Machine[J]. Mechanical Design and Manufacturing, 2017, (12): 212-215, 219.
[12] 向玲, 郭鹏飞, 高楠, 等. 基于IITD和FCM聚类的滚动轴承故障诊断[J]. 航空动力学报, 2018, 33(10): 2553-2560.
Xiang L, Guo P F, Gao N, et al. Fault Diagnosis of Rolling Bearing Based on IITD and FCM Clustering[J]. Journal of Aeronautical Power, 2018, 33 (10): 2553-2560.
[13] Zadeh L A. Probability measures of fuzzy events[J]. Journal of Mathematical Analysis & Applications, 1968, 23(2): 421-427.
[14] 郑近德, 程军圣, 杨宇. 基于改进的ITD和模糊熵的滚动轴承故障诊断方法[J]. 中国机械工程, 2012, 23(19): 2372-2377.
Zheng J D, Cheng J S, Yang Y. Fault Diagnosis Method of Rolling Bearing Based on Improved ITD and Fuzzy Entropy[J]. China Mechanical Engineering, 2012, 23 (19): 2372-2377.
[15] 李继猛,王慧,李铭,等. 基于改进的自适应无参经验小波变换的滚动轴承故障诊断[J]. 计量学报, 2020, 41(6): 710-716.
Li J M, Wang H, Li M, et al. Rolling Bearing Fault Diagnosis Based on Improved Adaptive Parameterless Empirical Wavelet Transform[J]. Acta Metrologica Sinica, 2020, 41(6): 710-716. |