|
|
Development and Characteristic Analysis of 100kA Fast Response Precision Impulse Shunt |
LONG Zhao-zhi1,LI Wen-ting1,FAN Jia-wei1,XIE Shi-jun2,LIU Shao-bo1,YU Ye-feng1 |
1. China Electric Power Research Institute, Wuhan, Hubei 430074, China
2. State Grid Sichuan Electric Power Research Institute, Chengdu, Sichuan 610072, China |
|
|
Abstract The impulse current is a transient current waveform, which has a short duration and can not be repeated, so it is difficult to evaluate the influencing factors of measurement errors. A fast response precise impulse shunt is developed. The measuring principle and size design of the shunt are analyzed. The transient response process of the shunt is studied. The output signal is welded to the outside of the resistor to eliminate the skin effect. The steady resistance of the shunt is 0.9697mΩ_and the stray inductance is 32nH. When the rated current is measured, the temperature rise of the resistance is less than 36℃. A step current generator is developed to measure the dynamic characteristics of the shunt. The step response time of shunt is less than 4ns. The convolution integral method is used to calculate the peak value and time parameter measurement error caused by the dynamic characteristics. The linearity, stability of the shunt are tested under 8/20μs. The uncertainty is evaluated by shunt and digital recorder separately. After analyzing the uncertainty components, the measurement uncertainty of the whole system is calculated to be 0.41% (k=2). It shows that the measuring device can be used as a standard measuring device for the calibration of current sensors.
|
Received: 23 October 2019
Published: 18 February 2021
|
|
|
|
|
[1]潘洋, 周力 任, 冯建. 一种新型低值宽带无感分流器时间常数测量方法[J]. 计量学报, 2019, 40(6): 946-951.
Pan Y, Zhou L R, Feng J. A new method for constant time measurement of low value wide-band non-inductive shunt [J]. Acta Metrologica Sinica, 2019, 40(6): 946-951.
[2]姚学玲, 陈景亮, 孙伟. 冲击电流测试系统中测量误差的试验研究[J]. 高电压技术, 2006, 32(3): 12-15.
Yao X L, Chen J L, Sun W. Experimental study on measuring error in impulse current system[J]. High Voltage Engineering, 2006, 32(3): 12-15.
[3]邹积岩, 段雄英, 张铁. 罗柯夫斯基线圈测量电流的仿真计算及实验研究[J]. 电工技术学报, 2001, 16(1): 81-84.
Zou J Y, Duan X Y, Zhang T. The simulating calculation and experimental research of Rogowski coil for current measurement[J]. Transactions of China Electrotechnical Society, 2001, 16(1): 81-84.
[4]袁涛, 雷超平, 司马文霞. 提高接地极散流效率的冲击接地降阻分析[J]. 电工技术学报. 2012, 27(11): 278-284.
Yuan T, Lei C P, Sima W X. Analysis of grounding resistance reduction effect based on enhancing impulse current leakage efficiency[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 278-284.
[5]Ibrahim A M. Self-Integrating Rogowski coil for high-impulse current measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(2): 353-360.
[6]Stanislav S. Current Measuring Shunts for Impulse Current Test According to IEC 62305-2010[C]//2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals. Odessa, 2018: 128-130.
[7]孔庆源, 戴敏. 冲击电流测量中Rogowski线圈的应用[J]. 高电压技术, 2005, 31(11): 6-7.
Kong Q Y, Dai M. Application of Rogowski coils in impulse current measurement[J]. High Voltage Engineering, 2005, 31(11): 6-7.
[8]李文婷, 龙兆芝, 范佳威, 等. 基于多层PCB罗氏线圈的精密冲击电流测量装置[J]. 电力工程技术, 2020, 40(6): 108-111.
Li W T, Long Z Z, Fan J W, et al. Transient current acquisition device based on PCB Rogowski coil[J]. Automation Devices & Equipments, 2020, 40(6): 108-111.
[9]Chen Q, Li H B, Zhang M M, et al. Design and characteristics of two Rogowski coils based on priented circuit board[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(3): 939-943.
[10]崔陆军, 王亚军, 王成银, 等. 基于方形骨架的宽频雷击电流传感器理论研究与实验[J]. 机械与电子, 2017, 35(3): 13-21.
Cui L J, Wang Y J, Wang C Y, et al. Theoretical and experimental research on broadband lightning current sensor based on square frame[J]. Machinery & Electronics, 2017, 35(3): 13-21.
[11]张冈, 王程远, 陈幼平. PCB空心线圈电流传感器的暂态特性[J]. 电工技术学报, 2010, 25(11): 85-89.
Zhang G, Wang C Y, Chen Y P. Transient behavior of PCB air-core current transformer[J]. Transactions of China Electrotechnical Society, 2010, 25(11): 85-89.
[12]Samimi M H, Mahari A, Farahnakian M A, et al. The Rogowski coil principles and applications: A review[J]. IEEE Sensors Journal, 2015, 15(2): 651-658.
[13]谢小军, 朱才溢, 李庆先, 等. 反射式Sagnac型光纤宽带大电流测量仪的研制与性能评估[J]. 计量学报, 2020, 41(8): 989-996.
Xie X J, Zhu C Y, Li Q X, et al. Development and Performance Evaluation of Reflective Sagnac Optical Fiber Broadband High Current Measuring Instrument[J]. Acta Metrologica Sinica, 2020, 41(8): 989-996.
[13]张达天, 陈水明, 屠幼萍, 等. 阻尼电阻及元件非理想特性对外积分式罗氏线圈的影响[J]. 现代电力, 2010, 27(2): 19-22.
Zhang D T, Chen S M, Tu Y P, et al. Influence of buffer resistance and element with imperfect characteristic on external integrating Rogowski coil[J]. Modern Electric Power, 2010, 27(2): 19-22.
[14]杨晓光, 金双双, 朱波, 等. 直流叠加脉冲电流波形宽频带电流传感器[J]. 仪器仪表学报, 2017, 38(12): 3036-3043.
Yang X G, Jin S S Zhu B, et al. Current sensor for DC superimposed with impulse current waveform[J]. Chinese Journal of Scientific Instrument, 2017, 38(12): 3036-3043.
[15]Velasco Q G, Roman L M, Conesa R A. et al. Design of a low-consumption fluxgate transducer for high-current measurement applications[J]. IEEE Sensors Journal, 2011, 11(2): 280-287.
[16]颜晓军,金海彬,王书强. 高电压脉冲校准装置研究[J]. 计量学报, 2020, 41(3): 333-338.
Yan X J, Jin H B, Wang S Q. Research on High Voltage Pulse Calibration Device[J]. Acta Metrologica Sinica, 2020, 41(3): 333-338.
[16]林飞鹏, 邵海明, 贾凯, 等. 一种新型大电流分流器检测仪原理和特点[J]. 电测与仪表, 2012, 49(10A): 102-104.
Lin F P, Shao H M, Jia K, et al. Principle and Characteristics of a New DC large Current Shunt Detector[J]. Electrical Measurement & Instrumentation, 2012, 49(10A): 102-104.
[17]Roberto F, Mirko M, Bernardo T. Analytical study of impulse current measuring shunts with cage configuration[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(5): 1260-1267.
[18]国家质量监督检验检疫总局. GB/T 16927. 4-2014 高电压和大电流试验技术 第4部分: 试验电流和测量系统的定义和要求[S].2014.
[19]刘金亮, 钟辉煌, 贺军涛, 等. 测量ns级脉冲大电流的同轴分流器[J]. 高压电器, 1997, (3): 54-56.
Liu J L, Zhong H H, He J T, et al. Coaxial shunt for measuring ns-level high pulse current [J]. High voltage apparatus, 1997, (3): 54-56.
[20]刘金亮, 徐启福, 李志忠, 等. 测量ns级脉冲大电流的折带式分流器[J]. 高电压技术, 2006, 32(5): 57-59.
Liu J L, Xu Q F, Li Z Z, et al. Fold Band Shunt Used in Measuring the ns-grade Pulse Current [J]. High Voltage Engineering, 2006, 32(5): 57-59.
[21]高晶丹, 定国良, 胡海涛, 等. 不同结构分流器的分流性能比较[J]. 制冷技术, 2013, 33(3): 24-30.
Gao J D, Ding G L, Hu H T, et al. Comparison of diffluence performance for distributors with different structures[J]. Chinese Journal of Refrigeration Technology, 2013, 33(3): 24-30.
[22]张建永, 贾云涛, 岳伟. 一种测量脉冲大电流的改进分流器设计[J]. 电子测量技术, 2013, 36(6): 25-28.
Zhang J Y, Jia Y T, Yue W. Design of improved shunt for pulsed current measurement[J]. Electronic Measurement Technology, 2013, 36(6): 25-28.
[23]国家质量监督检验检疫总局. JJF1059. 1-2012 测量不确定度评定与表示[S].2012.
[24]章欣, 龙兆芝, 宗贤伟, 等. 溯源用冲击电压标准波源[J]. 高电压技术, 2015, 41(8): 2810-2817.
Zhang X, Long Z Z, Zong X W, et al. Impulse voltage calibrator used in traceability[J]. High Voltage Engineering, 2015, 41(8): 2810-2817.
[25]刘少波, 龙兆芝, 鲁非, 等. 冲击电压标准波源的研制[J]. 高压电器, 2015, 51(9): 140-145.
Liu S B, Long Z Z, Lu F, et al. Study on impulse voltage calibrator[J]. High Voltage Apparatus, 2015, 51(9): 140-145. |
|
|
|