|
|
Acoustic Characteristics Analysis of Multilayer Media Based on Magnetic Resonance Imaging |
ZHU Qin-feng,ZHENG Hui-feng,WANG Yue-bing,CAO Yong-gang |
College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China |
|
|
Abstract Based on magnetic resonance images, a method for analyzing the acoustic characteristics of multilayer media was proposed, and the focal point of ultrasound passing through the layered structure was estimated.Firstly, after performing edge extraction such as region extraction, threshold segmentation, corrosion expansion on the magnetic resonance T1-weighted image of the sucrose solution, the average gray value of the local region was obtained.Then, the relationship function was calculated by calculating the relationship between the grayscale information on the magnetic resonance image and the concentration and sound velocity of the corresponding sucrose solution.Finally, a layered structure of sucrose solution that simulates biological tissues was established, and the relationship function was used to calculate the acoustic transmission of ultrasound through the layered structure and the focus forward movement of focused ultrasound.The experimental results show that the method analyzes the sound velocity, acoustic transmission coefficient and focus advance from the sucrose solution magnetic resonance image, compared with the actual value obtained by the experiment, the maximum difference is 0.6239mm, it is verified the possibility of acquiring biological tissue acoustic parameters can through magnetic resonance.
|
Received: 22 April 2020
Published: 28 August 2020
|
|
Fund:;National Key R&D Program of China |
Corresponding Authors:
Hui-feng ZHENG
E-mail: zjufighter@cjlu.edu.cn
|
|
|
|
[1]冯若. 超声空化与超声医学 [J].自然杂志, 2003, 25 (6): 35-38.
Feng R. Ultrasound cavitation and ultrasound medicine [J].Chinese Journal of Nature, 2003, 25 (6): 35-38.
[2]富京山. 全身超声诊断学 [M]. 北京: 人民军医出版社, 2008.
[3]Holland G A, Mironov O, Aubry J F, et al. High-intensity Focused Ultrasound [J]. Ultrasound Clinics, 2013, 8 (2): 213-226.
[4]熊六林. 高强度聚焦超声 (HIFU) 治疗肿瘤原理及临床应用现状 [J]. 中国医疗器械信息, 2009, 15 (3): 17-21.
Xiong l l.Principle and clinical application of HIFU therapy for tumor [J]. Chinese medical instrument information, 2009, 15 (3): 17-21.
[5]许利劼, 邹建中. 高强度聚焦超声治疗 “困难部位” 肝癌的安全性及有效性 [J]. 临床超声医学杂志, 2014, 16(3): 182-184.
Xu L J, Zou J Z.Safety and efficacy of high-intensity focused ultrasound in the treatment of “difficult site” liver cancer [J]. Journal of clinical ultrasound medicine, 2014, 16 (3): 182-184.
[6]邱东岳, 吉喆, 朱腾飞, 等. 基于方差和显著性特征的超声图像分割方法研究 [J]. 计量学报, 2018, 39 (5): 712-715.
Qiu D Y, Ji J, Zhu T F, et al. Ultrasonic Image Segmentation Based on Variance and Saliency Features [J]. Acta Metrologica Sinica, 2018, 39 (5): 712-715.
[7]伍建林, 罗娅红, 夏稻子. 医学影像诊断学 [M]. 北京: 科学技术文献出版社, 2006.
[8]Wijlemans J W, Bartels L W, Deckers R, et al. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours [J]. Cancer Imaging, 2012, 12 (2): 387-394.
[9]Hynynen K. MRI-guided focused ultrasound treatments [J]. Ultrasonics, 2010, 50 (2): 221-229.
[10]王韶林. 高强度聚焦超声焦域的实验研究 [D]. 天津: 天津医科大学, 2012.
[11]吕海涛. 生物多层组织的声传输特性研究 [D]. 西安: 陕西师范大学, 2006.
[12]田旭. 超声仿人体组织材料声学参数测量研究 [D]. 北京: 北京化工大学, 2009.
[13]宋健. 基于仿组织材料的超声衰减系数测量研究 [D]. 北京: 北京化工大学, 2015.
[14]解卓丽. 基于人体腹壁组织的非线性声场模型研究 [D]. 杭州: 浙江大学, 2013.
[15]丁亚军. 高强度聚焦超声治疗剂量控制关键问题研究 [D]. 长沙: 湖南师范大学, 2013.
[16]伏吉庆, 张伟, 贺青. 磁感应强度基准技术评述 [J]. 计量学报, 2019, 40 (4): 700-703.
Fu J Q, Zhang W, He Q. Review of the technologies of the magnetic flux density base standard [J]. Acta Metrologica Sinica, 2019, 40 (4): 700-703.
[17]魏佳佳. 超声液体声学特性测量技术研究 [D]. 广州: 华南理工大学, 2014.
[18]贾森. 快速高分辨率磁共振成像 [D]. 深圳: 中国科学院大学 (中国科学院深圳先进技术研究院), 2019.
[19]赵献策. 磁共振图像灰度不均匀性校正研究 [D]. 上海: 华东师范大学, 2016. |
|
|
|