|
|
Influence of Tracking Mode on Measurement Accuracy in Multi-Purpose Pose Measurement System |
ZHANG Shuai1,MIAO Dong-jing2,LI Jian-shuang2,ZHENG Ji-hui1,WANG Guo-lei3,KONG Ming1,KAN Ying-nan4 |
1. Collage of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China
3. School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
4. College of Civil Engineering, Jilin Jianzhu University, Changchun, Jilin 130118, China |
|
|
Abstract To accurately measure large size poses, a large size pose measurement device consisting of 7 laser tracking interferometers is established. According to the difference in the number of laser tracking interferometers measuring each mirror, the effects of two tracking methods, 322 and 331, on the accuracy of pose measurement are simulated. Therefore, it is found that the position of the measured point is related to the distance of the base station plane. The error model between the relative position between the measured point coordinate value and the measurement base station and the measurement error is derived from the coordinate solution formula. By analyzing the sensitivity of errors in the directions of x, y, and z to distance changes, it is found that errors caused by distance changes in the z direction are the most sensitive. When the distance between the measured point and the measurement base station is reduced from 1300.8mm to 0mm, the measurement error increases from 2.2μm to 2626.1μm. The actual attitude measurement experiment results show when a tracking method is adopted, the measured point can be avoided from being too close to the plane of the station, which is helpful to improve the measurement accuracy of the system.
|
Received: 14 June 2019
Published: 28 August 2020
|
|
|
|
|
[1]张俐, 华强. 飞机大部件位姿调整的关键测量特征点误差控制权值计算方法[J]. 计量学报, 2019, 40(3): 397-402.
Zhang L, Hua Q. Calculation method for key measurement feature point error control weight of aircraft large part position adjustment[J]. Acta Metrologica Sinica, 2019, 40(3): 397-402.
[2]Schmitt R H, Peterek M, Morse E, et al. Advances in Large-Scale Metrology-Review and future trends [J]. CIRPAnnals-Manufacturing Technology, 2016, 65(2): 643-665.
[3]叶声华, 邾继贵, 张滋黎, 等. 大空间坐标尺寸测量研究的现状与发展[J]. 计量学报, 2008, 29(z1): 1-6.
Ye S H, Zhu J G, Zhang Z L. Status and development of large-scale coordinate measurement research[J]. Acta Metrologica Sinica, 2008, 29(b09): 1-6.
[4]陈辉, 杨剑, 黄晓铭, 等. 基于多视图立体视觉的沙堆三维尺寸测量研究[J]. 计量学报, 2019, 40(3): 403-408.
Chen H, Yang J, Huang X M, et al. Research on 3D Dimensional Measurement of Sand Pile Based on Multi-view Stereo Vision[J]. Acta Metrologica Sinica, 2019, 40(3): 403-408.
[5]马丹丹, 王鹏程, 刘基宏, 等. 基于机器视觉的条码尺精确测量技术在落纱小车中的应用[J]. 计量学报, 2019, 40(3): 409-415.
Ma D D, Wang P C, Liu J H, et al. Application of Machine Vision-based Bar Code Accurate Measurement Technology in Doffering Cars[J]. Acta Metrologica Sinica, 2019, 40(3): 409-415.
[6]史建华, 刘盼. 大尺寸航空发动机叶片的高效型面检测方法[J]. 计量学报, 2018, 39(5): 605-608.
Shi J H, Liu P. High-efficiency profile detection method for large-size aero-engine blades[J]. Acta Metrologica Sinica, 2018, 39(5): 605-608.
[7]陈晓怀, 姜瑞, 王汉斌, 等. CMM在产品检验中的不确定度分析与合格性判定[J]. 计量学报, 2017, 38(1): 51-55.
Chen X H, Jiang R, Wang H B, et al. Uncertainty Analysis and Qualification Determination of CMM in Product Inspection[J]. Acta Metrologica Sinica, 2017, 38(1): 51-55.
[8]张红英, 余晓芬, 王标, 等. 大空间坐标测量网络的现场实时标定方法[J]. 计量学报, 2018, 39(1): 1-5.
Zhang H Y, Yu X F, Wang B, et al. On-site real-time calibration method for large space coordinate measurement network[J]. Acta Metrologica Sinica, 2018, 39(1): 1-5.
[9]吴斌, 许友, 杨峰亭, 等. 激光跟踪绝对测长多边法三维坐标测量系统[J]. 红外与激光工程, 2018,47(8): 140-145.
Wu B, Xu Y, Yang F T, et al. Laser tracking absolute length measurement polygon method three-dimensional coordinate measuring system[J]. Infrared and laser engineering, 2018, 47(8): 140-145.
[10]Zhuang H Q, Li B, Roth Z S, et al. Self-calibration and mirror center offset elimination of a multi-beam laser tracking system [J]. Robotics & Autonomous Systems, 1992, 9(4): 255-269.
[11]Takatsuji T, Goto M, Kurosawa T, et al. The relationship between the measurement error and the arrangement of laser trackers in laser trilateration[J]. Measurement Science & Technology, 2000, 11(1): 477-483.
[12]范百兴. 激光跟踪仪高精度坐标测量技术研究与实现[D]. 郑州:信息工程大学, 2013.
[13]Miao D, Wang G, Li J, et al. An improved selfcalibration algorithm for multilateration coordinates measuring system [C]//Eighth International Symposium on Advanced Optical Manufacturing and Testing Technology (AOMATT 2016), Suzhou, China, 2016.
[14]缪东晶, 李建双, 郑继辉, 等. 基于多边法的大尺寸位姿测量系统的自标定算法与仿真研究[J]. 计量学报, 2017, 38(Z1): 70-75.
Miao D J, Li J S, Zheng J H, et al. Self-calibration algorithm and simulation of large-scale pose measurement system based on multilateral method[J]. Acta Metrologica Sinica, 2017, 38(Z1): 70-75.
[15]郑继辉, 缪东晶, 李建双, 等. 采用标准长度的激光多边法坐标测量系统自标定算法[J]. 计量学报, 2019, 40(1): 64-70.
Zheng J H, Miao D J, Li J S, et al. Self-calibration algorithm for standard length laser multi-method coordinate measuring system[J]. Acta Metrologica Sinica, 2019, 40(1): 64-70.
[16]林永兵, 张国雄, 李真, 等. 四路激光跟踪干涉三维坐标测量系统自标定与仿真[J]. 仪器仪表学报, 2003, 24(2): 205-210.
Lin Y B, Zhang G X, Li Z, et al. Self-calibration and simulation of four-way laser tracking interferometric three-dimensional coordinate measuring system[J]. Chinese Journal of Scientific Instrument, 2003, 24(2): 205-210. |
|
|
|