|
|
Development of Environmental Parameters Automatic Measurement System for 1.2km Standard Baseline |
LIU Xue-de1,MIAO Dong-jing2,ZHANG Jing-yan2,LI Lian-fu2,LI Jian-shuang2,ZHANG Fu-min1,LI Ping1 |
1. Precision Instruments & Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract To improve field measurement accuracy, the 1.2km standard baseline an environmental parameters automatic measurement system is developed, and a hardware grouping and software parallel acquisition scheme is adopted. The accuracy rate of sensor data acquisition in the system is more than 98%, and the time of complete cycle acquisition of 82 sensors is less than 7s. Calculate the temperature variation of sensor 7s sampling interval, analyze and evaluate the refractive index compensation results, provide a scientific perspective for field standard baseline measurement, quantify the ideal measurement period of baseline, make the delay temperature difference less than 0.05℃, the refractive index correction error of high precision rangefinder in baseline measurement is controlled within 5×10-8.
|
Received: 05 July 2019
Published: 13 August 2020
|
|
|
|
|
[1]张瑜, 郝文辉. 大气介质对电磁波测距精度的影响[J]. 电波科学学报, 2006, 21(4): 632-634.
Zhang Y, Hao W H. Effect of atmospheric medium on precise of electromagnetic wave distance measurement [J]. Chinese Journal of Radio Science, 2006, 21(4): 632-634.
[2]赵树祥, 郭中华, 权佩军, 等, 大气折射率影响因素分析及应用[J]. 大学物理实验, 2018,(3): 32-35.
Zhao S X, Guo Z H, Quan P J, et al. Analysis and application of influencing factors of atmospheric refractive index[J]. 2018,(3): 32-35.
[3]李婷, 李建双, 缪东晶, 等. 温度条件对大尺寸测量装置精度影响的研究[J]. 计量学报, 2019, 40(6): 975-979.
Li T, Li J S, Miao D J, et al. Study of Temperature States Influence on the Accuracy of Large Size Measuring Devices[J]. Acta Metrology Sinica, 2019, 40(6): 975-979.
[4]Meiners-Hiagen K, Bosnjakovic A, Koechert P, et al. Air index compensated interferometer as a prospective novel primary standard for baseline calibrations[J]. Measurement Science & Technology, 2015, 26(8): 084002-1-084002-8.
[5]桑金. 我国野外基线若干问题的研究[J]. 测绘通报, 2012,(3): 48-52.
Sang J. Several Key Issues of National Field Baselines[J]. Bulletin of Surveying and Mapping, 2012,(3): 48-52.
[6]陈强华. 空气折射率测量方法的研究[D]. 北京: 清华大学, 2003.
[7]李建双, 梁平, 赵岩, 等. 野外大距离标准器——24m因瓦基线尺量值的可靠性[J]. 计量学报, 2008, 29(z1): 74-76.
Li J S, Liang P, Zhao Y, et al. Reliability of the value of an outdoor large dimension standard-24 m Invar Wire [J]. Acta Metrology Sinica, 2008, 29(z1): 74-76.
[8]Pollinger F, Meyer T, Beyer J, et al. The upgraded PTB 600 m baseline: a high-accuracy reference for the calibration and the development of long distance measurement devices[J]. Measurement Science & Technology, 2012, 23(9): 2910-2916.
[9]陈杨, 李建双, 缪东晶, 等. 基于传感器阵列的野外基线环境参数自动测量系统研制[J]. 计量学报, 2018, 39(4): 455-460.
Chen Y, Li J S, Miao D J, et al. Development of outdoor baseline environment parameters measurement system based on sensor array [J]. Acta Metrology Sinica, 2018, 39(4): 455-460.
[10]陈杨. 基于绝对测距的野外基线溯源关键技术的研究[D]. 杭州:中国计量大学, 2018.
[11]Salgado J, Himbert M, Azouigui S, et al. Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd: YAG lasers[J]. Review of Scientific Instruments, 2010, 81(5): 053112-1-053112-6.
[12]叶孝佑, 甘晓川, 常海涛, 等. 提高环境参量法测量空气折射率精度的研究[J]. 计量学报, 2008, 29(z1): 69-73.
Ye X Y, Gan X C, Chang H T, et al. The Improvement of Measuring Precision for Refractive Index of Air Using the Method of Edlén Equation Calculating with Environmental Parameters of Air[J]. Acta Metrology Sinica, 2008, 29(z1): 69-73.
[13]Bonsch G, Potulski E. Measurement of the refractive index of air and comparison with modified Edlensformulae[J]. Metrologia, 1998, 35(2): 133-139.
[14]包欢, 赵东明, 王若璞, 等. 高准确度基线检定仪器μ-base基线场测量试验[J]. 计量学报, 2014, 35(z1): 109-112.
Bao H, Zhao D M, Wang R P, et al. Baseline Field Experiments for the High Accuracy Baseline Verification Instrument μ-base[J]. Acta Metrology Sinica, 2014, 35(z1): 109-112.
[15]庄哲民. 基于环境参数融合的智能气体传感器设计[J]. 计量学报, 2004, 25(4): 380-383.
Zhuang Z M. An Intelligent Gas Sensor Based on the Fusion of Ambient Parameters[J]. Acta Metrology Sinica, 2004, 25(4): 380-383.
[16]袁兴起, 陈恺, 崔建军, 等. 应变传感器计量特性的校准方法[J]. 计量学报, 2018, 39(6): 836-841.
Yuan X Q, Chen K, Cui J J, et al. Calibration Method of Strain Sensor Metrological Characteristics[J]. Acta Metrology Sinica, 2018, 39(6): 836-841. |
|
|
|