|
|
Precisely Measure the Distance between the Falling Body's Mass Center and Its Optical Center for Absolute Gravimeters |
YU Ye1,HU Xiang1,WANG Qi-yu2,WU Shu-qing2,FENG Jin-yang2 |
1.Hubei Instiute of Measurement and Testing Technology, Wuhan, Hubei 430223
2.National Institute of Metrology, Beijing 100029 |
|
|
Abstract To reduce the influence of falling body rotation on the measurement result for absolute gravity measurement based on optical interferometry,a novel method used to collocate the falling bodys center of mass(Ocm) with its optical center by torsion pendulum was proposed. Analyzing the eigenfrequency of falling body by standard mode,the measurement equation of the center of optical and the center of mass deviation along the plumb line was deduced. In addition,analyzing the influence of the corner-cube retroreflectors refractive index and the gas damping for the measured results,respectively. Numerical analysis shows that when the incidence angle is between 0 and 0.1 degree, and the quality factor Q=1000, the disturbance of gravity acceleration caused by rotation can be optimal controlled at the level of 1.4μGal.
|
Received: 30 August 2018
Published: 29 June 2020
|
|
|
|
|
[1]Faller J E. Thirty years of progress in absolute gravimetry: a scientific capability implemented by technological advances [J]. Metrologia, 2002, 39(5): 425-428.
[2]Rothleitner C, Svitlov S, Mérimèche H, et al. Development of new free-fall absolute gravimeters [J]. Metrologia, 2009, 46(3): 283-297.
[3]胡华, 伍康, 申磊, 等. 新型高精度绝对重力仪[J]. 物理学报, 2012, 61(9): 542-549.
Hu H, Wu K, Shen L, et al. A new high precision absolute gravimeter [J]. Acta Physica. Sinica, 2012, 61(9): 542-549.
[4]余烨, 胡翔, 熊超, 等. 一种用于测量重力梯度的扭秤装置[J]. 计量学报, 2018, 39(2): 159-162.
Yu Y, Hu X, Xiong C, et al. A Torsion Balance Device for Measuring the Gravity Gradient[J]. Acta Metrologica Sinica, 2018, 39(2): 159-162.
[5]滕云田, 吴琼, 郭有光, 等. 基于激光干涉的新型高精度绝对重力仪[J]. 地球物理学进展, 2013, 28(4): 2141-2147.
Teng Y T, Qiong W, Guo Y G, et al. New type of high-precision absolute gravimeter base on laser interference [J]. Progress in Geophysics, 2013, 28(4): 2141-2147.
[6]Wu B, Wang Z, Cheng B, et al. . The investigation of a μGal-level cold atom gravimeter for field applications [J]. Metrologia, 2014, 51(5): 452-458.
[7]Dickerson S M, Hogan J M, Sugarbaker A, et al. Multiaxis inertial sensing with long-time point source atom interferometry [J]. Physical Review Letters, 2013, 111(8): 083001.
[8]Hanada H, Tsubokawa T, Tsuruta S. Possible large systematic error source in absolute gravimetry [J]. Metrologia, 1996, 33(5): 155-160.
[9]冯金扬, 吴书清, 李春剑, 等. 基于双干涉仪的自由落体绝对重力测量[J]. 光学精密工程, 2015, 23(10): 2730-2746.
Feng J Y, Wu S Q, Li C J, et al. Free-fall absolute gravity measurement based on double interferometers [J]. Optics and Precision Engineering, 2015, 23(10): 2740-2746.
[10]李春剑, 粟多武, 吴书清, 等. 光干涉绝对重力仪衍射修正[J]. 计量学报, 2017, 38(4): 420-423.
Li C J, Su D W, Wu S Q, et al. The Diffraction Correction for Interferometric Absolute Gravimeters[J]. Acta Metrologica Sinica, 2017, 38(4): 420-423.
[11]Rothleitner C, Francis O. On the influence of the rotation of a corner cube reflector in absolute gravimetry[J]. Metrologia, 2010, 47(5): 567-574.
[12]Hanada H. Coinciding the optical center with the center of gravity in a corner cube prism: a method[J]. Applied Optics, 1988, 27(16): 3530-3533.
[13]Nibauer T M, Constantino A, et al. Balancing a retroreflector to minimize rotation errors using a pendulum and quadrature Interferometer[J]. Applied Optics, 2015, 54(18): 5750-5758.
[14]Peck E R. Theory of the Corner-Cube Interferometer [J]. Journal of the Optical Society of America, 1948, 38(12): 1015: 1023. |
|
|
|