|
|
Preliminary Research on Practical Acoustic GasThermometry Using Helium |
YANG Sheng-liang1,FENG Xiao-juan1,LIN Hong1,ZHANG Jin-tao1,REN Cheng2 |
1. Division of Thermophysics and Process Measurements, National Institute of Metrology, Beijing 100029, China
2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China |
|
|
Abstract As a new generation nuclear reactor, reliable temperature measurement in a high temperature gas cooled reactor (HTGR) presents unique challenges. The conventional temperature measurement are based on the properties of thermometers materials calibrated by the laboratory, and thermometers could drift or even lose efficiency due to the variation of the properties and the lack of timely calibration, especially when the thermometers are exposed to high temperature and radioactive environment for a long time. Acoustic gas thermometry determines the thermodynamic temperature of a monatomic gas from measurements of the speed of sound in the gas. Because the helium in the gas-cooled reactor is stable, the temperature measurement using the speed of sound in helium could achieve higher reliability. A preliminary research on the practical acoustic gas thermometry using helium was implemented. A measurement system of the practical acoustic thermometry using cylindrical resonator was designed. The resonant frequency in helium was measured from 488K to 806K using acoustic waveguides. Then perturbations from the thermal and viscous boundary layers were corrected, and the thermodynamic temperature was determined based on the acoustic virial equation of state of helium. The relative standard deviations of the resonant frequency measurements are smaller than 0.07%, the signal to noise ratio of the measurements is acceptable. The relative difference between the thermodynamic temperature and the temperature measured by a thermocouple is less than 1%. The preliminary research supports the continuous investigation on the acoustic gas thermometry applying in harsh environments.
|
Received: 05 May 2019
Published: 08 June 2020
|
|
|
|
|
[1]李婷, 李建双, 缪东晶, 等. 温度条件对大尺寸测量装置精度影响的研究[J]. 计量学报, 2019, 40(6): 975-979.
Li T,Li J S,Miao D J,et al. Study of Temperature States Influence on the Accuracy of Large Size Measuring Devices[J]. Acta Metrologica Sinica, 2019, 40(6): 975-979.
[2]张俊超,熊利民,孟海凤,等. 太阳模拟器关键参量校准方法研究[J]. 计量学报, 2017,38(4): 402-405.
Zhang J C, Xiong L M, Meng H F, et al. Research on the Calibration Method of Key Parameters of Solar Simulator[J]. Acta Metrologica Sinica, 2017,38(4):402-405.
[3]周逸, 林鸿, 冯晓娟, 等. 石墨烯及其复合材料导热系数测量的研究进展[J]. 计量学报, 2020, 41(2): 159-169.
Zhou Y, Lin H, Feng X J, et al. Research the Progresses on Measurement of Thermal Conductivity of Graphene and Graphene's Composites[J]. Acta Metrologica Sinica, 2020, 41(2): 159-169
[4]符晓铭, 王捷. 高温气冷堆在我国的发展综述[J]. 现代电力, 2006, 23(5): 70-75.
Fu X M, Wang J. Review on the development of the High Temperature Gas-cooling Reactor in China[J]. Modern Electric Power, 2006, 23(5): 70-75.
[5]任啟森, 杨小勇, 黄志勇, 等. 高温气冷堆氦气透平循环工质的热物性[J]. 汽轮机技术, 2006, 48(2): 93-94.
Ren Q S, Yang X Y, Huang Z Y, et al. Thermophysical property of working fluid of High Temperature Gas Cooled Reactor helium gas turbine cycle[J]. Turbine Technology, 2006, 48(2): 93-94.
[6]Moldover M R, Gavioso R M, Mehl J B, et al. Acoustic gas thermometry[J]. Metrologia, 2014, 51(1): R1-R19.
[7]段宇宁, 林鸿, 张金涛, 等. 基准声学温度计的研究进展[J]. 计量学报, 2007, 28(z1): 1-6
Duan Y N, Lin H, Zhang J T, et al. Review on the primary acoustic gas thermometry[J]. Acta Metrologica sinica, 2007, 28(z1): 1-6.
[8]Fellmuth B, Gaiser C, Fischer J, et al. Determination of the Boltzmann constant: status and prospects[J]. Measurement Science and Technology, 2006, 17(10): R145-59.
[9]Pitre L, Sparasci F, Risegari L, et al. New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas[J]. Metrologia, 2017, 54(6): 856-873.
[10]de Podesta M, Sutton G, Underwood R, et al. Practical Acoustic Thermometry with Acoustic Waveguides[J]. International Journal of Thermophysics, 2010, 31(8-9): 1554-1566.
[11]Sutton G, de Podesta M, Veltcheva R I, et al. Practical Acoustic Thermometry with Acoustic Waveguide[C]// Temperature: Its Measurement and Control in Science and Industry. 2013: 943-948.
[12]Sutton G, Edwards G, Veltcheva R I, et al. Twin-Tube practical acoustic thermometry: theory and measurements up to 1000℃[J]. Measurement Science and Technology, 2015, 26(8): 085901.
[13]de Podesta M, Sutton G, Edwards G, et al. Practical Acoustic Thermometry with Two-Tube and Single-Tube sensors[C]// 4th International Confference on Advancements in Nuclear Instrumentation Measurement Methods and Their Application. Lisbon, Portugal, 2015.
[14]安连锁, 沈国清, 张波, 等. 电站锅炉中声学测温的试验研究[J]. 电站系统工程, 2007, 23(2): 23-25, 36.
An L S, Shen G Q, Zhang B, et al. Experiment Study on Acoustic Pyrometry in Power Plant Boiler[J]. Power System Engineering, 2007, 23(2): 23-25, 36.
[15]安连锁, 李庚生, 沈国清, 等. 声学测温系统在200 MW电站锅炉中的应用研究[J]. 动力工程学报, 2011, 31(12): 928-932.
An L S, Li G S, Shen G Q, et al. Study on the Application of Acoustic Pyrometry System in the 200 MW Power Plant Boiler[J]. Journal of Power Engineering, 2011, 31(12): 928-932.
[16]Zhang J T, Lin H, Sun J P, et al. Cylindrical acoustic resonator for the re-determination of the Boltzmann constant[J]. Int J Thermophysics, 2010, 31(7): 1273-1293.
[17]谷学敏, 林鸿, 冯晓娟, 等. 定程圆柱基准声学温度计初步研究[J]. 仪器仪表学报, 2013, 34(3): 502-508.
Gu X M, Lin H, Feng X J, et al. Preliminary Research on the Primary Acoustic Thermometry with the Fixed-path Cylindrical Resonator[J]. Journal of Scientific Instrument, 2013, 34(3): 502-508.
[18]Lin H, Feng X J, Gillis K A, et al. Improved determination of the Boltzmann constant using a single, fixed-length cylindrical cavity[J]. Metrologia, 2013, 50(5): 417-432.
[19]Feng X J, Gillis K A, Moldover M R, et al. Microwave-cavity measurements for gas thermometry up to the copper point[J]. Metrologia, 2013, 50(3): 219-226.
[20]张凯, 冯晓娟, 张金涛, 等. 传感器驱动电压对声学温度计中声速测量的影响[J]. 工程热物理学报, 2016, 37(12): 2526-2531.
Zhang K, Feng X J, Zhang J T, et al. Effect of Transducer Driving Voltages on Speed of Sound Measurement for Primary Acoustic Gas Thermometry[J]. Journal of Engineering Thermophisics, 2016, 37(12): 2526-2531.
[21]Feng X J, Zhang J T, Lin H, et al. Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and final results[J]. Metrologia, 2017, 54(5): 748-762.
[22]郑荣伟, 冯晓娟, 伍肆, 等. 近临界二氧化碳声速的精密测量研究[J]. 计量学报, 2017, 38(1): 1-6.
Zheng R W, Feng X J, Wu S, et al. Sound speed measurement for carbon dioxide near the critical region[J]. Acta Metrologica Sinica, 2017, 38(1): 1-6.
[23]崔劲, 冯晓娟, 林鸿, 等. 单圆柱微波谐振法测量热力学温度的研究[J]. 计量学报, 2018, 39(2): 255-261.
Cui J, Feng X J, Lin H, et al. Thermodynamic Temperature Measurement Using Single Cylindrical Microwave Resonator[J]. Acta Metrologica Sinica, 2018, 39(2): 255-261.
[24]陈厚桦, 冯晓娟, 林鸿, 等. 气体声学温度计中声波导管的优化设计研究[J]. 计量学报, 2019, 40(1): 1-7.
Chen H H, Feng X J, Lin H, et al. Optimization of acoustic waveguides for acoustic gas thermometry[J]. Acta Metrologica Sinica, 2019, 40(1): 1-7.
[25]McCarty R D, Arp V D. A New Wide Range Equation of State for Helium[M]//Fast R W. Advances in Cryogenic Engineering. Springer, Boston, MA, 1990: 1465-1475.
[26]冯晓娟, 林鸿, 刘强, 等. 圆柱定程干涉法声速测量原理与实验系统研制[J]. 工程热物理学报, 2011, 32(5): 725-728.
Feng X J, Lin H, Liu Q, et al. Fundamental Theory and Apparatus for Speed of Sound Measurement System Using Cylindrical Resonator[J]. Journal of Engineering Thermophisics, 2011, 32(5): 725-728.
[27]杜功焕, 朱哲民, 龚秀芳. 声学基础[M]. 南京: 南京大学出版社, 2001.
Du G H, Zhu Z M, Gong X F. Fundamental Theories of Acoustics[M]. Nanjing: Press of Nanjing University, 2001.
[28]安宝林, 刘强, 段远源. 边界层效应对定程干涉法声速测量的影响[J]. 工程热物理学报, 2012, 33(4): 561-564.
An B L, Liu Q, Duan Y Y. The Influence of Boundary Layer Effect on the Measurement of Speed of Sound Using Fixed Path Cylindrical Resonator[J]. Journal of Engineering Thermophisics, 2012, 33(4): 561-564.
[29]冯晓娟, 林鸿, 张金涛, 等. 圆柱声学共鸣腔边界层扰动的二阶修正模型[J]. 工程热物理学报, 2014, 35(1): 10-12.
Feng X J, Lin H, Zhang J T, et al. Second-Order Boundary Corrections for an Acoustic Cylindrical Resonator[J]. Journal of Engineering Thermophisics, 2014, 35(1): 10-12.
[30]尹钊玮, 冯晓娟, 林鸿, 等. 非连续边界层对圆柱声学共鸣频率的影响研究[J]. 计量学报, 2014, 35(1): 1-4.
Yin Z W, Feng X J, Lin H, et al. The discontinuous boundary layer effects on acoustic resonance frequency in cylindrical cavity[J]. Acta Metrologica Sinica, 2014, 35(1): 1-4.
[31]Hurly J J, Mehl J B. 4He Thermophysical properties: New Ab initio Calculation[J]. Journal of Research of the National Institute of Standards and Technology, 2007, 112(2): 75-94.
[32]Garberoglio G, Moldover M R, Harvey A H. Improved First-Principles Calculation of the Third Virial Coefficient of Helium[J]. Journal of Research of the National Institute of Standers and Technology, 2011, 116(4): 729-742. |
|
|
|