|
|
Time Domain Integral Method for Vibration Test Based on Combined Simpson Integral |
XU Xiao-hong,NI Chun-feng,YAN Xiao-qing |
Shazhou Professional Institute of Technology, Suzhou, Jiangsu 215600, China |
|
|
Abstract Aimed at the time domain integral problem for vibration test, a kind of combined Simpson integral method is presented. The vibration test data are divided into the odd sequence and the even sequence, and the integral calculation recursive formula for each point is drawn through combining Newton Leibniz formula and Simpson formula. The whole integral waveform consist of the two integral sequences. The verification test is carried out through the earthquake data provided by Matlab, and the result illustrates the effectiveness of the method. The method has high computing precision, its truncation error reach 4 order infinitesimal of sampling step, and is suitable for vibration test application.
|
Received: 22 August 2018
Published: 08 June 2020
|
|
|
|
|
[1]李舜酩, 郭海东, 李殿荣. 振动信号处理方法综述[J]. 仪器仪表学报, 2013, 34(8): 1907-1915.
Li S M, Guo H D, Li D R. Review of vibration signal processing methods[J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1907-1915. .
[2]Yang J, Li J, Lin G. A simple approach to integration of acceleration data for dynamic soil-structure interaction analysis[J]. Soil Dynamics and Earthquake Engineering, 2006, 26: 725-734.
[3]李祥松, 冯霏. 基于EMD方法求解发动机位移振动信号[J]. 中国工程机械学报, 2015, 13(4): 312-315.
Li X S, Feng F. EMD-enabled solution for engine displacement vibration signals[J]. Chinese Journal of Construction Machinery, 2015, 13(4): 312-315.
[4]陈为真, 汪秉文, 胡晓娅. 基于时域积分的加速度信号处理[J]. 华中科技大学学报(自然科学版), 2010, 38(1): 1-4.
Chen W Z, Wang B W, Hu X Y. Acceleration signal processing by aumerical integration[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2010, 38(1): 1-4.
[5]杨明,蔡晨光,刘志华,等. 基于外差激光干涉法的三轴向振动绝对校准方法研究[J]. 计量学报, 2018, 39(2): 201-207.
Yang M, Cai C G, Liu Z H, et al. Research on the Method of the Triaxial Primary Vibration Calibration
Using the Heterodyne Interferometry[J]. Acta Metrologica Sinica, 2018, 39(2): 201-207.
[6]杨继森, 张天恒, 蒋洪庆等. 基于变幅放大的机械振动精密测量仪设计[J]. 计量学报, 2016, 37(4): 390-393.
Yang J S, Zhang T H, Jiang H Q, et al. The design of high-precision mechanical vibration measurement instrument based on amplitude amplification[J]. Acta Metrologica Sinica, 2016, 37(4): 390-393.
[7]胡玉梅, 周英杰, 朱浩等. 基于趋势项误差控制的频域积分算法研究与应用[J]. 振动与冲击, 2015, 34(2): 171-175.
Hu Y M, Zhou Y J, Zhu H, et al. Integration algorithm based on trend-control of error in frequency domain[J]. Journal of Vibration and Shock, 2015, 34(2): 171-175.
[8]赵浩, 冯浩. 一种振动扭矩传感器标定方法研究[J]. 计量学报, 2018, 39(2): 178-181.
Zhao H, Feng H. Study on a novel calibration method for vibration torque sensor[J]. Acta Metrologica Sinica, 2018, 39(2): 178-181.
[9]Stiros S C. Errors in Velocities and displacements deduced from accelerographs: An approach based on the theory of error propagation[J]. Soil Dynamics and Earthquake Engineering, 2008, 285: 415-420.
[10]刘智颖, 王向公, 任威龙, 等. 辛普森公式的推广形式及应用[J]. 山东理工大学学报(自然科学版), 2014, 28(1): 29-31.
Liu Z Y, Wang X G, Ren W L, et al. The deducing forms of Simpson formula and its application[J]. Journal of Shandong University of Technology(Natural Science Edition), 2014, 28(1): 29-31.
[11]Hong Y H, Kim H K, Lee H S. Reconstruction of dynamic displacement and velocity from measured accelerations using the vibrational statement of an inverse problem[J]. Journal of Sound and Vibration, 2010, 329: 4980-5003.
[12]王济, 胡晓. MATLAB在振动信号处理中的应用[M]. 北京: 中国水利水电出版社, 2006. |
|
|
|