|
|
Research on Heave Data Test System of Inertial Navigation Equipment |
XU Xin-ping1, WANG Rui1, YUAN-Jing1, YANG Fan1, LU Li-xun2 |
1.Chongqing Academy of Metrology and Quality Inspection, Chongqing 400700, China
2.Chongqing Huayu Electric Group Co. Ltd., Chongqing 400700, China |
|
|
Abstract A calibration system based on STM32 single chip and single axis swing table was developed.The calibration system utilizedtriangular relationship within a circle with fixed center and fixed radius, and collected the heave data in the composite motion of the single-axis rocking table through the wire sensor. At the same time, the calibration system collected and processed the heave data which were outputed by the inertial navigation device. The calibration system outputing heave data was verified. The test results shown that the calibration systems measurement data was accurate and reasonable. The calibration system can realize the dynamic measurement of the heave parameters of the inertial navigation device, which compensated for the shortcomings of the complex structure and small range of existing calibration systems.
|
Received: 16 August 2019
|
|
|
|
|
1 黄卫权,李智超,卢曼曼. 基于BMFLC算法的舰船升沉测试方法[J]. 系统工程与电子技术, 2017, 39(12):2790-2795. HuangW Q, LiZ C, LuM M. Method of measurement for ship heave motion based on BMIFLC algorith [J]. Systems Engineering and Electronics, 2017, 39(12): 2790-2795.
2 秦永元. 惯性导航[M]. 北京:科学出版社,2014.
3 孙枫, 孙伟. 基于单轴旋转的光纤捷联惯导系统误差特性与实验分析[J]. 宇航学报, 2010, 31 ( 4 ): 1070-1077. SunF, SunW. Error Characteristics and Experimental Analysis of Fiber Strapdown Inertial Navigation System Based on Uniaxial Rotation[J]. Journal of Astronautics, 2010, 31 (4): 1070-1077.
4 TirertonD H, WestonJ L. Strapdown inertial navigation technology[M]. Reston: Copublished by the American institute of Aeronautics and Astronautics and the Institution of Electrical Engineers, 2004,453-456.
5 HeckmanD W, BaretelaM. Interferometric fiber optic gyro technology[J]. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(2): 23-28.
6 黄德鸣, 程禄. 惯性导航系统[M]. 北京: 国防工业出版社, 1986: 152-153.
7 赵翔, 杜普选, 李虎, 等. 基于MEMS加速度计和陀螺仪的姿态测试系统[J]. 铁路计算机应用, 2012, 21(3): 15-18. ZhaoX, DuP X, LiH, et al. Attitude Estimation System based on MEMS accledrometer and gyroscope[J]. Railway Computer Application, 1986: 152-153.
8 罗巍, 马林, 徐凯, 等. 惯性导航系统升沉速度的测试方法及装置: ZL200910228874. 1[P]. 2009-11-30.
9 李智超. 基于惯性系统的舰船升沉测量技术研究[D]. 哈尔滨:哈尔滨工程大学, 2017.
10 喻金钱, 喻斌. STM32F系列ARM Cortex-M3核微控制器开发与应用[M]. 北京: 清华大学出版社, 2011.
11 赖晓晨, 原旭, 孙宁. 嵌入式设计程序设计[M]. 北京:清华大学出版社, 2010.
12 孟强. 基于STM32的数据采集系统设计[D]. 南京: 南京林业大学, 2014.
13 马磊, 管善国, 吕良, 等. 不同校准方式下修正值的计算方法比较[J]. 中国计量大学学报, 2019, 30(3): 265-268. MaL, GuanS G, LüL, et al. Comparison of correction value calculating methods in different calibration types [J]. Journal of China University of Metrology, 2019, 30(3): 265-268.
14 刘红光, 李青, 李凌梅, 等. 基于误差相消原理的光程倍增测量方法[J]. 计量学报, 2019, 40(5): 776-779. LiuH G, LiQ, LiL M, et al. Optical path multiplication measurement based on error elimination principle[J].Acta Metrological Sinica, 2019, 40(5): 776-779. |
|
|
|