|
|
Degradation Feature Extraction Method of Hydraulic Pump Based on Integrated Complete Ensemble Empirical Mode Decomposition and Fuzzy Entropy |
JIANG Wan-lu1,2,KONG De-tian1,2,LI Zhen-bao1,2,TONG Xiang-wei1,2,YUE Wen-de1,2 |
1. Hebei Province Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, Hebei 066004, China
2. Heavy-duty Intelligent Manufacturing Equipment Innovation Center of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract Aiming at the fact that the vibration signals of hydraulic pumps have the characteristics of nonlinear, non-stationary and low signal to noise ratio, a feature extraction method based on complete ensemble empirical mode decomposition and fuzzy entropy integrated is proposed. Firstly, the vibration signals of the hydraulic pump are decomposed into several intrinsic mode functions by means of complete ensemble empirical mode decomposition. Secondly, the correlation coefficients between each intrinsic mode function and the original signal are calculated, and the components with higher correlation coefficients are selected to obtain their fuzzy entropies, then the degradation characteristics are obtained. Finally, taking the measured data in different degradation states of hydraulic pump as an example, the variable predictive model based class discriminate method is used to verify the effectiveness of the proposed feature extracted method. The experimental results show that the method has higher precision in extracting the hydraulic pump degradation characteristics, and the accuracy rate of degenerate state identification is increased to 100%.
|
Received: 12 June 2018
Published: 17 February 2020
|
|
|
|
|
[1]张龙, 黄文艺, 王宁, 等. 基于一种简单时域方法的滚动轴承性能退化评估[J]. 机床与液压, 2014, (12): 68-72.
Zhang L, Huang W Y, Wang N, et al. A simple time-domain method for bearing performance degradation assessment[J]. Machine Tool & Hydrulics, 2014, (12): 68-72.
[2]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.
[3]杨宇, 于德介, 程军圣. 基于经验模态分解的滚动轴承故障诊断方法[J]. 中国机械工程, 2004, 15(10): 908-911.
Yang Y, Yu D J, Cheng J S. Roller bearing fault diagnosis method based on EMD[J]. China Mechanical Engineering, 2004, 15(10): 908-911.
[4]时培明,赵娜,苏冠华,等. 变载荷齿轮箱故障信号智能检测方法[J]. 计量学报, 2018, 39(6): 847-851.
Shi P M, Zhao N, Su G H, et al. Intelligent Detection Method of Variable Load Gearbox Fault Signal[J]. Acta Metrologica Sinica, 2018, 39(6): 847-851.
[5]胡爱军, 孙敬敬, 向玲. 经验模态分解中的模态混叠问题[J]. 振动、测试与诊断, 2011, 31(4): 429-434.
Hu A J, Sun J J, Xiang L. Mode mixing in empirical mode decomposition[J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(4): 429-434.
[6]张进林. 抑制经验模态分解端点效应的常用方法性能比较研究[D]. 昆明: 云南大学, 2010.
[7]Wu Z H, Huang N. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[8]Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2011, 125(3): 4144-4147.
[9]杨兴林, 储维, 李儒凡, 等. 基于CEEMD样本熵的柴油机故障诊断[J]. 内燃机, 2016, (1): 46-50.
Yang X L, Chu W, Li R F, et al. Fault diagnosis of diesel engine based on CEEMD sample entropy[J]. Internal Combustion Engines, 2016, (1): 46-50.
[10]张淑清,乔永静,张立国,等. 基于CEEMD和GG聚类的电能质量扰动识别[J]. 计量学报, 2019, 40(1): 49-56.
Zhang S Q, Qiao Y J, Zhang L G, et al. Power Quality Disturbance Identification Based on CEEMD and GG Clustering[J]. Acta Metrologica Sinica, 2019, 40(1): 49-56.
[11]胥永刚, 李凌均, 何正嘉. 近似熵及其在机械设备故障诊断中的应用[J]. 信息与控制, 2002, 31(6): 547-551.
Xu Y G, Li L J, He Z J. Approximate entropy and its applications in mechanical fault diagnosis[J]. Information and Control, 2002, 31(6): 547-551.
[12]赵志宏, 杨绍普. 一种基于样本熵的轴承故障诊断方法[J]. 振动与冲击, 2012, 31(6): 136-140.
Zhao Z H, Yang S P. Sample entropy-based roller bearing fault diagnosis method[J]. Journal of Vibration and Shock, 2012, 31(6): 136-140.
[13]刘慧, 和卫星, 陈晓平. 生物时间序列的近似熵和样本熵方法比较[J]. 仪器仪表学报, 2004, 25(z1): 806-807.
Liu H, He W X, Chen X P. Approximate entropy and sample entropy for physiological time-series[J]. Chinese Journal of Scientific Instrument, 2004, 25(z1): 806-807.
[14]陈伟婷. 基于熵的表面肌电信号特征提取研究[D]. 上海: 上海交通大学, 2008.
[15]Rao R, Lakshminarayanan S. Variable predictive models-A new multivariate classification approach for pattern recognition applications[J]. Pattern Recognition, 2009, 42(1): 7-16.
[16]胡剑超, 练继建, 马斌, 等. 基于CEEMD和小波包阈值的组合降噪及泄流结构的模态识别方法[J]. 振动与冲击, 2017, 36(17): 1-9.
Hu J C, Lian J J, Ma B, et al. A de-noising and modal identification combined method based on CEEMD and wavelet packet threshold for flood discharge structures[J]. Journal of Vibration and Shock, 2017, 36(17): 1-9. |
|
|
|