|
|
Research on Leapfrog Measurement Method of Articulated Coordinate Measuring Machine Based on Distance Constraint |
LIU Shi-da,ZHAO Hui-ning,YU Lian-dong |
School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China |
|
|
Abstract To solve the problem that the measuring range of articulated coordinate measuring machine(ACMM)is limited and the error is large in the large scale measurement, a leapfrog measuring method on ACMM based on the distance constraint is proposed. In the process of coordinate transformation of ACMM, leapfrog balls are used as the public reference points and the spatial position relation between leapfrog balls is calibrated by the high accurate CMM. In the process of calculating coordinate transformation parameters, the distance between any two leapfrog balls is taken as the distance constraint. The gross error existing in measurement result is eliminated and the parameters of coordinate transformation model are optimized to improve the accuracy of coordinate transformation. The experimental results show that the distance constraint can effectively improve the accuracy of coordinate transformation parameters, and the number of public reference points can also greatly improve the accuracy of leapfrog measurement.
|
Received: 06 August 2018
Published: 19 December 2019
|
|
|
|
|
[1]Peggs G N. Recent development in the large scale dimensional metrology[J]. Institution of Mechanical Engineers, 2009, 223(6): 571-595.
[2]Ye S H, Zhong W, Qu X H. Prospective of precision measurement technology[J]. Mechatronics, 2001,(6): 6-7.
[3]唐七星, 余晓芬, 王标. 超大尺寸激光测距大型测控网络研制[J]. 计量学报, 2016, 37(4): 360-365.
Tang Q X, Yu X F, Wang B. The development of large scale measurement and control network for large space laser ranging[J]. Acta Metrologica Sinica, 2016, 37(4): 360-365.
[4]黄桂平, 叶声华, 李广云, 等. 经纬仪非接触大尺寸三坐标测量系统的开发及其在航天器检测中的应用[J]. 计量学报, 2002, 29(3): 9-12.
Huang G P, Ye S H, Li G Y, et al. Development on non-contacting 3D measurement system of theodolites and its application in aerospace[J]. Acta Metrologica Sinica, 2002, 29(3): 9-12.
[5]Yu L D, Zhao H N. Development of precision measurement network of experimental advanced superconducting tokamak[J]. Optical Engineering, 2014, 53(12): 1-6.
[6]郑继辉,缪东晶,李建双,等. 采用标准长度的激光多边法坐标测量系统自标定算法[J]. 计量学报, 2019, 40(1): 64-70.
Zheng J H, Miao D J, Li J S, et al. Self-calibration Algorithm for Laser Multilateral Coordinate Measurement System Using Standard Length Method[J]. Acta Metrologica Sinica, 2019, 40(1): 64-70.
[7]顾永奇, 于连栋, 覃世军. 组合式超大尺寸测量技术在EAST装置中的应用[J]. 工具技术, 2012,(46): 63-66.
Gu Y Q, Yu L D, Tan S J. Combined large-scale measuring techniques in application of EAST device[J]. Tool Engineering, 2012,(46): 63-66.
[8]于连栋, 赵会宁. 关节类坐标测量机关键技术及进展[J]. 仪器仪表学报, 2017, 38(8): 1879-1888.
Yu L D, Zhao H N. Key technologies and advance of articulated coordinate measuring measuring machines[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1879-1888.
[9]Shiu Y C, Ahmad S. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB[J]. IEEE Transactions on Robotics and Automation, 1989, 5(1): 16-29.
[10]于连栋, 程文涛, 费业泰. 基于激光跟踪仪的关节式坐标测量机参数标定[J]. 中国科学技术大学学报, 2009, 39(12): 1329-1332.
Yu L D, Cheng W T, Fei Y T. Parameter calibration method for an articulated coordinate measuring machine with laser tracker[J]. Journal of University of Science and Technology of China, 2009, 39(12): 1329-1332.
[11]Sultan I A, Puthiyaveettil P. Calibration of an articulated CMM using stochastic approximations[J]. International Journal of Advanced Manufacturing Technology, 2012, 63: 201-207.
[12]王凌云, 张国玉, 徐熙平. 基于蛙跳式柔性三坐标测量系统误差理论分析[J]. 机械工程学报, 2009, 45(4): 304-308.
Wang L Y, Zhang G Y, Xu X P. Theoretical analysis on the error of three coordinate measuring system based on the leapfrog type[J]. Journal of Mechanical Engineering, 2009, 45(4): 304-308.
[13]王德元, 唐文彦, 张晓琳,等. 基于标准器的大尺寸测量系统坐标统一化方法[J]. 仪器仪表学报, 2015, 36(8): 1845-1852.
Wang D Y, Tang W Y, Zhang X L, et al. Coordinate unification method in large scale metrology system based on standard artifact[J]. Chinese Journal of Scientific Instrument, 2015, 36(8): 1845-1852.
[14]刘湛基, 王晗, 陈桪,等. 机器人与激光跟踪仪的坐标系转换方法研究[J]. 中国测试, 2017, 43(11): 102-107.
Liu Z J, Wang H, Chen X, et al. Study on the method of coordinate transformation between robot and laser tracker[J]. China Measurement & Test, 2017, 43(11): 102-107.
[15]孙小荣, 张书毕, 徐爱功,等. 七参数坐标转换模型的适用性分析[J]. 测绘科学, 2012, 37(2): 37-39.
Sun X R, Zhang S B, Xu A G, et al. Applicability analysis of seven-parameter coordinate transformation model[J]. Science of Surveying and Mapping, 2012, 37(2): 37-39.
[16]张飞, 王建强, 罗寒. 七参数坐标转换模型的比较分析[J]. 测绘与空间地理信息, 2016, 39(5): 48-51.
Zhang F, Wang J Q, Luo H. The comparative and analysis of seven-parameter coordinate conversion model[J]. Geomatics & Spatial Information Technology, 2016, 39(5): 48-51.
[17]Goodchild M F. Citizens as sensors: The world of volunteered geography[J]. GeoJournal, 2007, 69(4): 211-221.
[18]费业泰. 误差理论与数理统计[M]. 北京: 机械工业出版社, 2010. |
|
|
|