|
|
Study on Isothermal Characteristics of Gravity Cesium Heat Pipe |
ZHANG Kai1,2,YUE Kai1,YAN Xiao-ke2,TONG Wen-yu3 |
1. School of Energy & Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, China
2. National Institute of Metrology, Beijing 100029, China; 3. Nanjing Tech University, Jiangsu, Nanjing 211816, China |
|
|
Abstract To verify the key technology of the development of the cesium heat pipe, the isothermal performance and the start-up characteristics of the gravity cesium heat pipe were studied under a constant temperature condition by measuring the temperature distribution of the outer wall of the heat pipe. Also, the effects of the length of the condensation section on the isothermal performance of the heat pipe were analyzed. The results showed that, the cesium heat pipe can start normally when the temperature of the heating furnace was in the range from 330℃ to 630℃ and had a good heat transfer ability. Moreover, the higher the temperature of the heating furnace, the faster the start-up of the heat pipe. The temperature of the wall surfaces of the heat pipe showed serrated temperature fluctuations when the length of the condensation section is 300mm. The mechanism of boiling phase transition heat transfer was analyzed in the heat pipe from the perspective of superheat. The selection of a suitable length of condensation section can avoid the occurrence of the phenomena of the periodic intermittent boiling. In addition, the experimental results proved that the cesium heat pipe can be used as a high-efficiency heat transfer element within the temperature range from 330℃ to 630℃, and is suitable for realizing the zinc freezing point of the ITS-90.
|
Received: 30 July 2019
Published: 19 December 2019
|
|
|
|
|
[1]曲伟, 王焕光, 段彦军. 高温及超高温热管的启动特性和传热极限[J]. 工程热物理学报, 2011, 32(8): 1345-1348.
Qu W, Wang H G, Duan Y J. Startup characteristics and heat transfer limits of high and super high temperature heat pipes [J]. Journal of Engineering Thermophysics, 2011, 32(8): 1345-1348.
[2]Tournier J M, El-Genk M S. A vapor flow model for analysis of liquid-metal heat pipe startup from a frozen state[J]. International journal of heat and mass transfer, 1996, 39(18): 3767-3780.
[3]于萍, 张红, 许辉, 等. 高温钠热管再启动特性研究[J]. 中国电机工程学报, 2015, 35(2): 404-410.
Yu P, Zhang H, Xu H, et al. Restart characteristics of high-temperature sodium heat pipe [J]. Proceedings of the CSEE, 2015, 35(2): 404-410.
[4]Jang J H. Startup characteristics of a potassium heat pipe from the frozen state[J]. Journal of thermophysics and heat transfer, 1995, 9(1): 117-122.
[5]捷曼尔M G, 胡亚才, 冯踏青, 等. 钠钾合金高温热管性能试验研究[J]. 浙江大学学报(工学版), 1999, (4): 80-83.
Gamal M G, Hu Y C, Feng T Q, et al. Analysis on the properties of NaK alloy high temperature heat pipe and its experimental study[J]. Journal of Zhejiang University (Engineering Science), 1999, (4): 80-83.
[6]郭青, 郭航, 闫小克, 等. 蒸发段长度对钠钾合金热管启动性能影响[J]. 工程热物理学报, 2016, 37(8): 1717-1720.
Guo Q, Guo H, Yan X K, et al. Effect of the evaporator length on start-up performance of sodium-potassium alloy heat pipe [J]. Journal of Engineering Thermophysics, 2016, 37(8): 1717-1720.
[7]郭航, 贾先剑, 郭青, 等. 不同加热功率条件下钠钾合金热管启动和传热性能[J]. 航空动力学报, 2019, 34(1): 1-7.
Guo H, Jia X J, Guo Q, et al. Start-up and heat transfer performance of a sodium-potassium alloy heat pipe under different conditions of heating power[J]. Journal of Aerospace Power, 2019, 34(1): 1-7.
[8]贾先剑, 郭航, 郭青, 等. 加热温度对钠钾合金热管启动和传热性能影响[J]. 太阳能学报, 2019, 40(1): 17-23.
Jia X J, Guo H, Guo Q, et al. Effect of heating temperature on start-up and heat transfer performance of Na-K alloy heat pipe[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 17-23.
[9]Wu F,Song D,Yi X,et al.Cesium heat-pipe thermostat[C]//AIP Conference Proceedings,2013,1552(1):830-833.
[10]黄燊彦,郝小鹏,王景辉,等.铯, 钠热管标准黑体辐射源研制及性能评价[J].计量学报,2014,35(2):120-124.
Huang S Y, Hao X P, Wang J H, et al.Development and characterization of cesium, sodium heat pipe standard blackbody radiation sources [J].Acta Metrologica Sinica,2014, 35(2):120-124.
[11]丁林超, 袁达忠, 唐大伟, 等. 标准黑体源用铜-R134a热管研制及均温性实验研究[J]. 计量学报, 2017, 38(3): 292-295.
Ding L C, Yuan D Z, Tang D W, et al. Development and experimental study on the temperature uniformity of Cu-R134a heat pipe used for standard blackbody source[J]. Acta Metrologica Sinica, 2017, 38(3): 292-295.
[12]赵亿坤, 王景辉, 原遵东, 等. 低温标准黑体辐射源的性能研究[J]. 计量学报, 2017, 38(5): 589-592.
Zhao Y K, Wang J H, Yuan Z D, et al. Study on the performance of the low-temperature blackbody radiation source. [J]. Acta Metrologica Sinica, 2017, 38(5): 589-592.
[13]孟苏,蔡静,董磊. Co-C共晶点研制及评价[J]. 计量学报, 2019, 40(1): 8-12.
Meng S,Cai J,Dong L. The Development and Evaluation of the Co-C Eutectic Point[J]. Acta Metrologica Sinica, 2019, 40(1): 8-12.
[14]李桂云, 屠进. 高温热管工质的选择[J]. 节能技术, 2001,(1): 42-44.
[15]Hill K D, Gotoh M. The vapour pressure of cesium between 370℃ and 660℃[J]. Metrologia, 1996, 33(4): 307.
[16]Renaot E, Elgourdou M, Bonnier G. The “temperature amplifier”: an innovative application of pressure-controlled heat-pipes for calibration of PRTs and thermocouples[J]. 2003.
[17]沈维道, 童钧耕. 工程热力学[M]. 北京: 高等教育出版社, 2007. |
|
|
|