[1]Machot F A, Mosa A H, Ali M, et al. Activity Recognition in Sensor Data Streams for Active and Assisted Living Environments[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2018, 28(10): 2933-2945.
[2]Lu L, Cai Q L, Zhan Y J . Activity Recognition in Smart Homes[J]. Multimedia Tools and Applications, 2017, 76(22): 24203-24220.
[3]罗晓宇. 基于DBN-HMM的人体动作识别[D]. 西安:西安理工大学, 2018.
[4]Wen J H, Wang Z Y. Learning general model for activity recognition with limited labelled data[J]. Expert Systems with Applications, 2017, 74(5): 19-28.
[5]陈文超. 基于条件随机场的人体动作识别[D]. 成都:电子科技大学, 2016.
[6]Nweke H F, Teh Y W, Al-Garadi M A, et al. Deep Learning Algorithms for Human Activity Recognition using Mobile and Wearable Sensor Networks: State of the Art and Research Challenges[J]. Expert Systems with Applications, 2018, 105(9):233-261.
[7]Ronao C A, Cho S B. Human activity recognition with smartphone sensors using deep learning neural networks[J]. Expert Systems with Applications, 2016, 59(10):235-244.
[8]Yang J, Nguyen M N, San P P, et al. Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition[C]//IJCAI. IJCAI’15 Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015: 3995-4001.
[9]李艇. 基于3D CNN的人体连续动作识别[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[10]Ordóez F J, Roggen D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1): 115.
[11]Arifoglu D, Bouchachia A. Activity recognition and abnormal behaviour detection with recurrent neural networks[J]. Procedia Computer Science, 2017, 110: 86-93.
[12]张儒鹏, 于亚新, 张康, 等. 基于 OI-LSTM 神经网络结构的人类动作识别模型研究[J]. 计算机科学与探索, 2018, 12(12): 1926-1939.
Zhang R P, Yu Y X, Zhang K, et al. Research on human action recognition model based on OI-LSTM neural network structure[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(12): 1926-1939.
[13]Liu J, Wang G, Hu P, et al. Global Context-Aware Attention LSTM Networks for 3D Action Recognition[C]//IEEE Computer Society. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).
Hawaii, USA, 2017:1647-1656.
[14]Du W, Wang Y, Qiao Y. Recurrent Spatial-Temporal Attention Network for Action Recognition in Videos[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1347-1360.
[15]宇文浩. 基于注意机制的卷积递归神经网络的动作识别[D]. 大连:大连理工大学, 2017.
[16]Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//TUM (Munich) and FAU (Erlangen-Nuremberg). The 18th International Conference on Medical Image Computing and Computer Assisted Intervention, Munich, Germany. 2015: 234-241.
[17]Hongyi Z, Hsinchun C, Randall B. A sequence-to-sequence model-based deep learning approach for recognizing activity of daily living for senior care[J]. Journal of Biomedical Informatics, 2018, 84(8): 148-158.
[18]Wu L, Tian F, Zhao L, et al. Word attention for sequence to sequence text understanding[C]//AAAI Association. Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans, USA,2018: 5578-5585.
[19]Kadari R, Zhang Y, Zhang W, et al. CCG supertagging via Bidirectional LSTM-CRF neural architecture[J]. Neurocomputing, 2018, 283(3): 31-37.
[20]Ergen T, Kozat S S. Efficient Online Learning Algorithms Based on LSTM Neural Networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017,29(8):3772-3783.
[21]Anguita D, Ghio A, Oneto L, et al. A public domain dataset for human activity recognition using smartphones[C]//ESANN. European Symposium on Artificial Neural Networks. Bruges, Belgium, 2013: 11-14.
[22]Xu Y, Shen Z, Zhang X, et al. Learning multi-level features for sensor-based human action recognition[J]. Pervasive and Mobile Computing, 2017, 40: 324-338.
[23]Chavarriaga R, Sagha H, Calatroni A, et al. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition[J]. Pattern Recognition Letters, 2013, 34(15): 2033-2042.
[24]Wang A. A Comparative Study on Human Activity Recognition Using Inertial Sensors in a Smartphone[J]. IEEE Sensors Journal, 2016, 16(11): 4566-4578.
[25]Cao L, Wang Y, Zhang B, et al. GCHAR: An efficient Group-based Context—aware human activity recognition on smartphone[J]. Journal of Parallel and Distributed Computing, 2018, 118: 67-80.
[26]Zeng M, Nguyen L T, Yu B, et al. Convolutional Neural Networks for human activity recognition using mobile sensors[C]// IEEE. Sixth International Conference on Mobile Computing. Austin. TX, USA,2014: 1-18.
[27]Alsheikh M A, Selim A, Niyato D, et al. Deep Activity Recognition Models with Triaxial Accelerometers[C]//AAAI. AAAI Workshop: Artificial Intelligence Applied to Assistive Technologies and Smart Environments. Phoenix, Arizona, USA, 2016: 8-13. |