|
|
Prediction of Boiler NOx Emission Based on Mixed Chicken Swarm Algorithm and Kernel Extreme Learning Machine |
NIU Pei-feng,DING Xiang,LIU Nan,CHANG Ling-fang,ZHANG Xian-chen |
College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract Taking a 300 MW subcritical circulating fluidized bed boiler as an object of study, the NOx emission of the boiler was predicted accurately. A model about NOx emission from different working conditions was established using hybrid chicken swarm optimization based on simulated annealing(SACSO) and kernel extreme learning machine(KELM). By comparing in the differential evolution algorithm(DE), the particle swarm optimization(PSO) and the original chicken swarm optimization(CSO), the superiority of the improved algorithm was proved. Then, several models were compared in traditional BP algorithm, support vector machine (SVM), extreme learning machine (ELM) and KELM.The Finally determinded SACOS-KELM model has higher prediction accuracy, stability and better generalization ability, so this model is a good choice for boiler NOx emission in modeling and prediction.
|
Received: 24 January 2018
Published: 01 September 2019
|
|
|
|
|
[1]牛培峰, 马云鹏, 张京, 等. 基于相关向量机的电站锅NOx燃烧优化[J]. 计量学报, 2016, 37(2): 191-196.
Niu P F, Ma Y P, Zhang J, et al. Utility Boilers NOx Combustion Optimization Based on Relevance Vector Machine[J]. Acta Metrologica Sinica, 2016, 37(2): 191-196.
[2]冯磊华, 桂卫华, 杨峰. 基于改进POS的电站锅炉低NOx燃烧优化[J]. 系统仿真学报, 2011, 23(12): 2812-2815.
Feng L H, Gui W H, Feng Y. Improved Particle Swarm Optimization to Optimize Combustion of Power Plant Boiler for Low NOx Emission[J]. Journal of System Simulation, 2011, 23(12): 2812-2815.
[3]牛培峰, 肖兴军, 李国强, 等. 基于万有引力搜索算法的电厂锅炉NOx排放模型的参数优化[J]. 动力工程学报, 2013, 33(2): 100-106.
Niu P F, Xiao X J, Li G Q, et al. Parameter optimization for NOx emission model of power plant boilers based on Gravitational Search Algorithm[J]. Journal of Chinese Society of Power Engineering, 2013, 33(2): 100-106.
[4]牛培峰, 王丘亚, 马云鹏, 等. 基于量子自适应鸟群算法的锅炉NOx排放特性研究[J]. 计量学报, 2017, 38(6): 770-775.
Niu P F, Wang Q Y, Ma Y P, et al. Study on NOx Emission from Boiler Based on Quantum Adaptation Bird Swarm Algorithm[J]. Acta Metrologica Sinica, 2017, 38(6): 770-775.
[5]Lv Y, Yang T T, Liu J Z. An adaptive least squares support vector machine model with a novel update for NOx emission prediction[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 145: 103-113.
[6]周昊, 丁芳, 黄燕, 等. 核心向量机的电站锅炉NOx排放特性大数据建模[J]. 中国电机工程学报, 2016, 36(3): 717-722.
Zhou H, Ding F, Huang Y, et al. Large-scale Data Modeling of NOx Emission Property of Power Station Boiler Based on Core Vector Machine[J]. Proceedings of the CSEE, 2016, 36(3): 717-722.
[7]Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[8]杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(S1): 146-153.
Yang X Y, Guan W Y, Liu Y Q, et al. Prediction Intervals Forecasts of Wind Power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146-153.
[9]王新迎, 韩敏. 基于极端学习机的多变量混沌时间序列预测[J]. 物理学报, 2012, 61(8): 97-105.
Wang X Y, Han M, et al. Multivariate chaotic time series prediction based on extreme learning machine [J].Acta Physica Sinica, 2012, 61(8): 97-105.
[10]Huang G B, Zhou H, Ding X, et al. Extreme Learning Machine for Regression and Multiclass Classification[J]. IEEE Transactions on Systems Man & Cybernetics Part B, 2012, 42(2): 513-529.
[11]叶林, 刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报, 2011, 31(31): 102-108.
Lin Y E, Liu P. Combined Model Based on EMD-SVM for Short-term Wind Power Prediction[J]. Proceedings of the CSEE, 2011, 31(31): 102-108.
[12]Kennedy J, Eberhart R. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Perth, Australia, 1995: 1942-1948.
[13]胡春海, 李涛, 刘永红, 等. 基于改进差分进化算法的运动想象脑机接口频带选择[J]. 计量学报, 2018, 39(2):276-279.
Hu C H, Li T, Liu Y H, et al. Motor Imagrey Brain Computer Interface Band Selection Based on Improved Differential Evolution Algorithm[J]. Acta Metrologica Sinica, 2018, 39(2): 276-279.
[14]Yang X S, He X. Bat algorithm: literature review and applications[J]. International Journal of Bio-Inspired Computation, 2013, 5(3): 141-149.
[15]Meng X B, Liu Y, Gao X Z, et al. A New Bio-inspired Algorithm: Chicken Swarm Optimization[C]// ISCI. Advances in Swarm Intelligence: 5th International Conference. Hefei, China, 2014: 86-94.
[16]Fang L J, Zuo H Y, Pang L, et al. Image reconstruction through thin scattering media by simulated annealing algorithm[J]. Optics & Lasers in Engineering, 2018, 106: 105-110.
[17]孔飞, 吴定会. 一种改进的鸡群算法[J]. 江南大学学报(自然科学版), 2015, 14(6): 681-688.
Kong F, Wu D H. An Improved Chicken Swarm Optimization Algorithm[J]. Journal of Jiangnan University (Natural Science Edition), 2015, 14(6): 681-688. |
|
|
|