|
|
Study on Measurement of Water Vapor Diffusion Coefficient of Building Materials by Spherical Absorption Method |
WANG You-hui1,TIAN Shuai-qi2,MA Meng-chen1,WANG Shi-yin1,XU Xu1, FAN Li-wu2,YU Zi-tao2 |
1. College of Metrological and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
2. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract An experimental approach was built for measuring the diffusion coefficient of water vapor by a spherical absorption method, taking the typical porous building material aerated concrete as an example. Meanwhile, through uncertainty analysis and method verification, the feasibility and accuracy for measuring the water vapor diffusion coefficient of building materials were investigated. It is concluded that the spherical absorption method is suitable for measuring the water vapor diffusion coefficient of porous building materials and it has the advantages of short time and accurate results. For aerated concrete, the half-time method is more accurate than transient techniques in calculating water vapor diffusion coefficient. The water vapor diffusion coefficient of aerated concrete gradually increases between 45% and 80% relative humidity. While at higher humidity, water vapor diffusion coefficient gradually decreases due to the appearance of liquid water.
|
Received: 31 May 2018
Published: 01 September 2019
|
|
|
|
|
[1]陈会娟, 陈滨. 多孔建筑材料热湿传递过程的研究[J]. 暖通空调, 2004, 34(11): 24-29.
Chen Hj, Chen B.Heat and mass transfer in porous building materials: a review [J]. Journal of HV & AC, 2004, 34(11): 24-29.
[2]Roels S, Talukdar P, James C, et al. Reliability of material data measurements for hygroscopic buffering [J]. International Journal of Heat & Mass Transfer, 2010, 53(23-24): 5355-5363.
[3]ISO12572: 2001(E) Hygrothermal performance of building materials and products Determination of water vapour transmission properties [S]. 2001.
[4]ASTM E96-00, Standard Test Method for Water Vapor Transmission of Materials [S]. 2000.
[5]Pavlík Z, umár J, Pavlíková M, et al.A Boltzmann transformation method for investigation of water vapor transport in building materials [J]. Journal of Building Physics, 2012, 35(3): 213-223.
[6]易思阳, 金虹庆, 范利武, 等. 多孔建筑材料水蒸气扩散系数的瞬态测试方法[J]. 浙江大学学报(工学版), 2016, 50(1): 16-20.
Yi S Y, Jin H Q, Fan L W, et al. Transient determination of water vapor diffusion coefficient of porous building materials [J]. Journal of Zhejiang University(Engineering Science), 2016, 50(1): 16-20.
[7]Arfvidsson J, Cunningham M J. A transient technique for determining diffusion coefficients in hygroscopic materials [J]. Building & Environment, 2000, 35(3): 239-249.
[8]Delgado J M P Q, Ramos N M M, Freitas V P D. Application of hybrid and moment methods to the measurement of moisture diffusion coefficients of building materials [J]. Heat & Mass Transfer, 2011, 47(11): 1491-1498.
[9]王斐, 邵晓红, 汪文川, 等. CH4和CO2在活性炭微球内扩散系数的测定[J]. 化工学报, 2006, 57(8): 1891-1896.
Wang F, Shao X H, Wang W C, et al. Measurements of diffusion coefficients for methane and carbon dioxide in activated meso-carbon microbeads [J]. Journal of Chemical Industry and Engineering, 2006, 57(8): 1891-1896.
[10]Crank J. The mathematics of diffusion [M]. Oxford: Clarendon Press, 1956.
[11]Felder R M. Estimation of gas transport coefficients from differential permeation, integral permeation, and sorption rate data [J]. Journal of Membrane Science, 1978, 3(1): 15-27.
[12]田帅奇, 王鹏程, 仉庆宇, 等. 加气混凝土水蒸气有效扩散系数的稳态实验研究[C]//高等学校工程热物理第二十三届全国学术会议. 成都, 2017.
[13]GB 11968蒸压加气混凝土砌块[S]. 2006.
[14]孙抱真, 李广才, 贾传玖.蒸压加气混凝土水化产物的定量分析方法[J]. 硅酸盐学报, 1982, 10(3): 119-125.
Sun B Z, Li G C, Jia C J. Quantitative analysis method for autoclaved product of autoclaved aerated concrete [J]. Journal of silicate, 1982, 10(3): 119-125.
[15]殳伟群.动态测量不确定度问题初探[J]. 计量学报, 2003, 24(3): 245-249.
Shu W Q. A Study of the Dynamic Measurement Uncertainty [J]. Acta Metrologica Sinica, 2003, 24(3): 245-249.
[16]沈昱明, 张进明. 对流量测量不确定度评估中若干名词术语的看法[J]. 计量学报, 2016, 37(1): 109-112.
Shen Y M, Zhang J M. Perspective on Some Terminology of Evaluation of Flow Measurement Uncertainty [J]. Acta Metrologica Sinica, 2016, 37(1): 109-112.
[17]崔骊水, 李鹏, 邱丽荣,等.微风速标准装置的建立和热线风速仪校准方法的实验研究[J]. 计量学报, 2018, 39(3): 289-293.
Cui L S, Li P, Qiu L R, et al. Experiment Investigation on Calibration of Hot Wire Anemometer Based on Low Air Speed Reference Facility.[J]. Acta Metrologica Sinica, 2018, 39(3): 289-293.
[18]倪育才. 实用测量不确定度评定[M]. 5版. 中国质检出版社, 2016.
[19]孟海凤, 熊利民, 张俊超, 等. 太阳电池光电性能参数校准方法研究[J]. 计量学报, 2017, 38(5): 567-570.
Meng H F, Xiong L M, Zhang J C, et al.[J]. Research on the Photo-electric Characteristic Calibration of Solar Cells [J]. Acta Metrologica Sinica, 2017, 38(5): 567-570.
[20]Barrett E P, Joyner L G, Halenda P P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms [J]. J am chem soc, 1951, 73(1): 373-380.
[21]冯驰, 冯雅, 孟庆林. 加气混凝土蒸汽渗透系数的变物性取值方法[J]. 土木建筑与环境工程, 2013, 35(5): 132-136.
Feng C, Feng Y, Meng Q L. Approach to Determine Value of Variable Vapor Permeability of Autoclaved Aerated Concrete [J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(5): 132-136. |
|
|
|