[1]Mokhtari Z, Holé S, Lewiner J. Temperature and humidity behaviour of a corona based smoke sensor [J]. Journal of Electrostatics, 2015, 76: 62-66.
[2]Yang S L, Jin S. Analysis of the Optical Smoke Detector Sensitivity [J]. Chinese Journal of Sensors & Actuators, 2006, 19(2): 425-428.
[3]Ko B C, Park J O, Nam J Y. Spatiotemporal bag-of-features for early wildfire smoke detection [J]. Image and Vision Computing, 2013, 31(10): 786-795.
[4]Simone Calderara, Paolo Piccinini, Rita Cucchiara. Vision based smoke detection system using image energy and color information [J] . Machine Vision and Applications, 2011, 22(4): 705-719.
[5]Morerio P, Marcenaro L, Regazzoni C S, et al. Early fire and smoke detection based on colour features and motion analysis [C]// Image Processing (ICIP), 2012 19th IEEE International Conference on. IEEE, 2012: 1041-1044.
[6]Marko Heikkil, Matti Pietikinen, Schmid C. Description of interest regions with local binary patterns [J]. Pattern recognition, 2009, 42(3): 425-436.
[7]程淑红, 高许, 程树春, 等. 基于计算机视觉的运动车辆检测[J]. 计量学报, 2017, 38(3): 288-291.
Cheng S H, Gao X, Cheng S C, et al. Moving Vehicle Detection Based on Computer Vision [J]. Acta Metrologica Sinica, 2017, 38(3): 288-291.
[8]Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [C]// Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. 2001, 1: I-I.
[9]Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C]// Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. 1999, 2: 246-252.
[10]James M. Flame and Smoke Estimation for Fire Detection in Videos based on Optical Flow and Neural Networks [J]. International Journal of Research in Engineering and Technology, 2014, 3(8): 324-328.
[11]王洪斌, 于菲, 李一骏, 等. 分块特征匹配与局部差分结合的运动目标检测[J]. 计量学报, 2015, 36(4): 352-355.
Wang H B, Yu F, LI Y J, et al. Detection of Moving Object by Combining Block Features Matching and Local Differential [J]. Acta Metrologica Sinica, 2015, 36(4): 352-355.
[12]Redmon J, Farhadi A. YOLO9000: better, faster, stronger [C/OL].https://arxiv.org/abs/1612.08242.
[13]Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.
[14]Cooijmans T, Ballas N, Laurent C, et al. Recurrent batch normalization [C/OL]. https://arxiv.org/abs/1603.09025.
[15]Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [C]//Advances in neural information processing systems. Montreal, Canada, 2015: 91-99. |