[1]Kim C M, Shin M W, Jeong S M, et al. Real-time motion generating method for artifical fish [J]. Computer Science and Network Security, 2007, 7(10): 52-61.
[2] Lai C L, Chiu C L. Using image processing technology for water quality monitoring system [C]//ICMLC. International conference on machine learning and cybernetics. Guilin,China, 2011: 1856-1861.
[3]Zheng H Y, Liu R, Zhang R, et al. A method for real-time measurement of respiratory rhythms in medaka (Oryzias latipes) using computer vision for water quality monitoring [J]. Ecotoxicology and environmental safety, 2014, 100: 76-86.
[4] Ma H, Tsai T F, Liu C C. Real-time monitoring of water quality using temporal trajectory of live fish [J]. Expert Systems with Applications, 2010, 37(7): 5158-5171.
[5]程淑红, 李雷华, 刘洁, 等. 基于视觉感知的鱼群运动行为特征参数提取[J]. 计量学报, 2017, 38(2): 175-178.
Cheng S H, Li L H, Liu J, et al. Fish Movement Behavior Characteristic Parameter Extraction Based on Visual Perception [J]. Acta Metrologica Sinica, 2017, 38(2): 175-178.
[6]程淑红, 刘洁, 李雷华. 基于鱼类运动行为的水质异常评价因子研究[J]. 仪器仪表学报, 2015, 36(8): 1759-1766.
Cheng S H, Liu J, Li L H. Study on anomaly water quality assessment factor based on fish movement behavior [J]. Chinese Journal of scientific Instrument, 2015, 36(8): 1759-1766.
[7] Cauwenberghs G. Incremental and decremental support vector machine[J]. Machine Learning, 2001, 44 (13): 409- 415.
[8]Chen T Q, Guestrin C. XGBoost: A Scalable Tree Boosting System [C]// ACM. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York, USA, 2016:785-794.
[9]Guo G D, Wang H, Bell D A, et al. KNN Model-Based Approach in Classification [J]. Lecture Notes in Computer Science, 2003, 2888: 986-996.
[10]程淑红, 刘洁. 基于MWF和GF的复杂光照下人脸识别研究[J]. 计量学报, 2017, 38(1): 60-64.
Cheng S H, Liu J. Face Recognition under Complex Illumination Based on Multi-scale Weberface and Gradientface[J]. Acta Metrologica Sinica, 2017, 38(1): 60-64.
[11]陈杰, 尚丽. 基于核竞争学习算法的图像特征提取[J]. 计量学报, 2017, 38(5): 576-579.
Chen J, Shang L. Image Feature Extraction Using Kernel Winner-take-all Based on Independent Component Analysis Algorithm [J]. Acta Metrologica Sinica, 2017, 38(5): 576-579.
[12]Lin T Y, Dollár P, Girshick R , et al. Belongie, Feature Pyramid Networks for Object Detection [C]// IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu, HI, 2017: 936-944.
[13]Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]//IEEE . 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, 2015: 1-9.
[14]Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [J]. Computer Science, 2015, 72(18): 75-83.
[15]Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, 2015: 2818-2826.
[16]Xiao X F, Jin L W, Yang Y F,et al. Building fast and compact convolutional neural networks for offline handwritten Chinese character recognition[J]. Pattern Recognition, 2017, 72: 72-81.
[17]Wilson D R, Martinez T R. The general inefficiency of batch training for gradient descent learning [J]. Neural Netw, 2003, 16(10): 1429-1451.
[18]Cshalev- shwartz S, Singer Y. Primal Estimated Subgradient Solver for SVM [J]. Mathematical Programming, 2011, 127(1):3-30. |