[1]王傲胜.基于测量不确定度的平面度误差搜索范围研究[J].计量学报,2017,38(2):168-170.
Wang A S. Research on Search Area for Flatness Error Based on the Measurement Uncertainty[J]. Acta Metrologica Sinica, 2017, 38(2): 168-170.
[2]程银宝,陈晓怀,王汉斌,等.CMM尺寸测量的不确定度评定模型研究[J].计量学报,2016, 37(5): 462-466.
Cheng Y B, Chen X H, Wang H B, et al. Research on Uncertainty Estimation Model of CMM for Size Measurement[J]. Acta Metrologica Sinica, 2016, 37(5): 462-466.
[3]白小亮,卫尊义,冯娜,等.石油管齿形标准样板测量方法及测量不确定度评定[J].工具技术,2015,49(6):88-91.
Bai X L, Wei Z Y, Feng N, et al. Measurement Method of Thread Profile Gauge in Oil Tubular Goods and Its Uncertainty in Measurement [J]. Tool Engineering, 2015,49(6):88-91.
[4]凌明祥,李会敏,黎启胜,等.含相关性的测量不确定度拟蒙特卡罗评定方法[J].仪器仪表学报,2014,35(6):1385-1393.
Ling M X, Li H M, Li Q S, et al. Quasi Monte Carlo method for the measurement uncertainty evaluation considering correlation[J]. Chinese Journal of Scientific Instrument, 2014,35(6):1385-1393.
[5]郝晓剑,张根甫,昝清波.基于半导体激光器的热电偶时间常数测试系统及不确定度分析[J].激光与光电子学进展,2016,53(8):081408.
Hao X J, Zhang G F, Zan Q B. Thermocouple Time Constant Test System and Uncertainty Analysis Based on Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2016,53(8): 081408.
[6]唐艳林,杨洪耕.基于最大熵原理的敏感负荷电压暂降故障频次研究方法[J].电测与仪表,2015,52(18):27-30.
Tang Y L, Yang H G. Study on the fault frequency of sensitive load due to voltage sags based on maximum entropy principle[J]. Electrical Measurement & Instrumentation, 2015,52(18):27-30.
[7]姜瑞,陈晓怀,王汉斌,等.基于贝叶斯信息融合的测量不确定度评定与实时更新[J].计量学报,2017,38(1):123-126.
Jiang R, Chen X H, Wang H B, et al. Evaluation and Real Time Updating of Measurement Uncertainty Based on
Bayesian Information Fusion[J]. Acta Metrologica Sinica, 2017, 38(1): 123-126.
[8]吴福仙,温卫东.极大似然最大熵概率密度估计及其优化解法[J].南京航空航天大学学报,2017,49(1):110-116.
Wu F X, Wen W D. Estimation and Optimization of MLE Maximum Entropy Probability Density[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017,49(1):110-116.
[9]谌贝,龚鹏伟,谢文,等.最大熵原理在测量不确定度评定中的应用[J].宇航计测技术,2016,36(5):15-18.
Shen B, Gong P W, Xie W, et al. The Maximum Entropy Applied in the Evaluation of the Measurement Uncertainty [J]. Journal of Astronautic Metrology and Measurement, 2016,36(5):15-18.
[10]王惠娟,肖新平.基于最大熵原理的测量不确定度商概率建模及计算[J].数学的实践与认识,2016,46(13):201-207.
Wang H J, Xiao X P. Evaluation of Measurement Uncertainty in Quotient Probability Model Based on Maximum Entropy Principle[J]. Mathematics in Practice and Theory, 2016,46(13):201-207. |