|
|
Research on Fractal Characterization of the Surface Morphology of Cu/Ti Nano Thin Film |
LIN Qi-jing1,2,3,4,WU Hao2,ZHANG Fu-zheng2,WANG Chen-ying1,2,JIANG Zhuang-de1,2 |
1. Collaborative Innovation Center of High-End Manufacturing Equipment, Xian Jiaotong University, Xian, Shaanxi 710054, China
2. State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xian Jiaotong University,Xian, Shaanxi 710049, China
3. State Key Laboratory of Digital Manufacturing Equipment & Technology,Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, China |
|
|
Abstract Different composition and thickness of Cu/Ti films are fabricated by magnetron sputtering technology and their surface morphology are measured using atomic force microscope (AFM). The method of power spectrum is used to characterize the fractal morphology of the AFM height images. The results show that the Cu/Ti film surface morphology has multi-scale behavior and surface evolution in the whole and local area presents different scaling behavior. The high frequency section of the power spectrum for AFM image directly reflects the detail information of the surface while low frequency section reflects the complexity of the background region. There is an inevitable correlation between low frequency fractal dimension and roughness, because the change of low frequency fractal dimension can reflect the change trend of rough value Ra.
|
Received: 09 August 2017
Published: 05 September 2018
|
|
|
|
|
[1]王琛英,景蔚萱,蒋庄德,等. 采用HRTEM对石墨烯材料单层厚度测量的研究[J]. 计量学报, 2017, 38(2): 145-148.
[2]Boampong A A, Kim J R, Lee J R, et al. Enhancement of the Electrical Performance of the Organic Ferroelectric Memory Transistor by Reducing the Surface Roughness of the Polymer Insulator with a Homo-Bilayer PVDF-TrFE [J]. Journal of Nanoscience and Nanotechnology, 2017, 17(8): 5722-5725.
[3]Li J S, Tang Y, Li Z T, et al. Study on the optical performance of thin-film light-emitting diodes using fractal micro-roughness surface model [J]. Applied Surface Science, 2017, 410: 60-69.
[4]Sayles R S, Thomas T R. Surface topography as a nonstationary random process[J]. Nature, 1978, 271(5644): 431-434.
[5]费斌. 典型机械加工表面及其粘着磨损中分形理论的研究[D]. 西安:西安交通大学, 1997.
[6]Yehoda J E, Messier R . Are thin film physical structures fractals?[J]. Applications of Surface Science, 1985, 22-23: 590-595.
[7]Lin Q J, Yang S M, Wang C Y, et al. Multifractal analysis for Cu/Ti bilayer thin films[J]. Surface and Interface Analysis, 2013, 45(8): 1223-1227.
[8]Yadav R P, Agarwal D C, Kumar M, et al. Effect of angle of deposition on the fractal properties of ZnO thin film surface[J]. Applied Surface Science, 2017, 416: 51-58.
[9]Gong Y X, Misture S T, Gao P, et al. Surface roughness measurements using power spectrum density analysis with enhanced spatial correlation length[J]. Journal of Physical Chemistry C, 2016, 120(39): 22358-22364.
[10]Ponomareva A A, Moshnikov V A, Suchaneck G, et al. Microstructural Characterization of Hierarchical Structured Surfaces by Atomic Force Microscopy[C]//2nd International Conference on Competitive Materials and Technological Processes (Ic-Cmtp2). Miskolc-Lillafüred, Hungary, 2013:47.
[11]Solaymani S, Elahi S M, Nezafat N B, et al. Characterization of microroughness parameters in Cu-C nanocomposite prepared by co-deposition of RF-sputtering and RF-PECVD[J]. European Physical Journal-Applied Physics, 2013, 64 (1): 11301.
[12]吕建国,宋学萍,孙兆奇. 溅射超薄Au 膜表面形貌的分形表征[J]. 功能材料, 2010, 41 (7): 1261-1264.
[13]张磊,程鑫彬,张锦龙,等.光学表面功率谱密度的表征[J]. 红外与激光工程,2015,(12):3707-3712.
[14]肖淑衡,梁栋,王云鹤,等. 煤表面介观形貌特征的二维功率谱分析[J]. 湖南科技大学学报(自然科学版), 2006, 21 (4): 23-26.
[15]修吉宏. 基于图像功率谱的航空图像质量判别技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2005.
[16]汪渊,徐可为. Cu-W薄膜表面形貌的分形表征与电阻率[J]. 物理学报, 2004, 53 (3): 900-904. |
|
|
|