|
|
Motor Imagrey Brain Computer Interface Band Selection Based on Improved Differential Evolution Algorithm |
HU Chun-hai,LI Tao,LIU Yong-hong,QI Fan |
Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University,Qinhuangdao, Hebei 066004, China |
|
|
Abstract Due to the fact that different peoples brain response to events is in different frequency bands, a method of multi-strategy mutation operator and time-varying nonlinear crossover factor differential evolution is proposed for accurate determination of the personal optimal filtering frequency band, and feature vectors are extracted by common spatial pattern algorithm and classified by the linear classifier. Based on this strategy, 10 times 5-fold cross validation experiments for BCI competition III-dataset 4a EEG data of five subjects are implemented. Experimental results show that the algorithm has the advantages of strong stability, less time-consuming and strong real-time performance, and the problem of optimal bands selection in motor imagery BCI feature extraction is therefore solved.
|
Received: 10 October 2016
Published: 11 February 2018
|
|
|
|
|
[1]Wolpaw J R, Birbaumer N, Mcfarland D J, et al. Brain-computer interfaces for communication and control[J]. Clinical Neurophysiology, 2002, 113(6): 767-791.
[2]Hohne J, Holz E, Staigersalzer P, et al. Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution[J]. Plos One, 2014, 9(8):1-11.
[3]张立国, 张玉曼, 金梅, 等. 基于盲源分离的P300脑电信号特征提取方法的研究[J]. 计量学报, 2015, 36(6): 634-637.
[4]Park C, Looney D, Rehman N U, et al. Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(1): 10-22.
[5]王金甲, 薛芳, 李慧. 基于稀疏组lasso的脑机接口通道和特征选择研究[J]. 仪器仪表学报, 2015, 36(8):1831-1837.
[6]He L, Hu Y, Li Y, et al. Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG[J]. Neurocomputing, 2013, 121(18):423-433.
[7]单海军, 朱善安. 基于Relief-SBS的脑机接口通道选择[J]. 生物医学工程学杂志, 2016,(2):350-356.
[8]魏中海, 魏庆国.基于回溯搜索优化算法的运动想象脑机接口频带选择[J].科学技术与工程, 2015, 15(14):70-75.
[9]Das S, Mullick S S, Suganthan P N. Recent advances in differential evolution — An updated survey[J]. Swarm & Evolutionary Computation, 2016, 27:1-30.
[10]Epitropakis M G, Tasoulis D K, Pavlidis N G, et al.Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators[J].IEEE Transactions on Evolutionary Computation, 2011, 15(15):99-119.
[11]Guo S M, Yang C C.Enhancing Differential Evolution Utilizing Eigenvector-Based Crossover Operator[J].IEEE Transactions on Evolutionary Computation, 2015, 19(1):31-49.
[12]李明爱, 刘净瑜, 郝冬梅.基于改进算法的运动想象脑电信号识别方法[J].中国生物医学工程学报, 2009, 28(2):161-165.
[13]Blei D M, Ng A Y, Jordan M I, et al. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003,3: 993-1022.
[14]Lu N, Yin T.Motor imagery classification via combinatory decomposition of ERP and ERSP using sparse nonnegative matrix factorization[J].Journal of Neuroscience Methods, 2015, 249:41-49.
[15]于向洋,罗志增. 基于小波系数非线性连续函数衰减的脑电信号去噪[J]. 计量学报, 2017,38(6):754-757. |
|
|
|