|
|
The Parameter Identification of Permanent Magnet Synchronous Motor Based on Improved Cuckoo Search Algorithm |
WU Zhong-qiang,DU Chun-qi,ZHANG Wei,LI Feng |
Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract Based on improved cuckoo search algorithm, a kind of parameter identification method of permanent magnet synchronous motor is proposed. In view of the deficiency of cuckoo search algorithm, designing the fuzzy reasoning based on cloud membership to adjust the probability of an alien egg discovered by host nests and using adaptive variable step method to adjust step size of Lévy flights. The improved algorithm can accelerate the convergence speed and improve the local and global optimization ability by increasing the diversity of the population. Permanent magnet synchronous motor multi-parameter identification results show that improved cuckoo algorithm can effectively identify the motor parameters, and compared with the unmodified algorithm, the improved algorithm show the effectiveness and superior performance.
|
Received: 14 December 2015
Published: 11 August 2017
|
|
|
|
|
[1]Faustner D, Kemmetmüller W, Kugi A. Magnetic Equivalent Circuit Modeling of a Saturated Surface-Mounted Permanent Magnet Synchronous Machine[J]. IFAC-PapersOnLine, 2015, 48(1): 360-365.
[2]Senjyu T, Noguchi Y, Urasaki N, et al. Parameter identification for interior permanent-magnet synchronous motor[C]//International Conference on Electrical Machines and Systems, Korea, 2007.
[3]Underwood S J, Husain I. Online parameter estimation and adaptive control of permanent-magnet synchronous machines[J]. Industrial Electronics, IEEE Transactions on, 2010, 57(7): 2435-2443.
[4]Rashed M, MacConnell P F A, Acarnley P. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation[J]. Industrial Electronics, IEEE Transactions on, 2007, 54(3): 1664-1675.
[5]Boileau T, Nahid-Mobarakeh B, Meibody-Tabar F. On-line identification of PMSM parameters: model-reference vs EKF[C]//Industry Applications Society Annual Meeting, Edmonton, Canada,2008.
[6]Jaramillo R, Alvarez R, Urdenas V, et al. Identification of induction motor parameter using an extended Kalman filter[C]//1st International Conference on Electrical and Electronics Engineering, Piscataway, USA, 2004.
[7]Liu L, Liu W, Cartes D A. Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors[J]. Engineering Applications of Artificial Intelligence, 2008, 21(7): 1092-1100.
[8]王东霞, 宋爱国, 温秀兰. 微分进化算法在圆度误差评定中的应用[J]. 计量学报, 2015, 36 (2): 123-127.
[9]孙浩, 杨景明, 呼子宇, 等. 基于改进鱼群算法的铝热连轧摩擦系数模型研究[J]. 计量学报, 2016, 37 (1): 53-55.
[10]赵新秋, 赵利娟, 杨景明, 等. 基于万有引力算法的铝热连轧规程优化设计[J]. 计量学报, 2015, 36 (5): 517-520.
[11]李德毅, 孟海军. 隶属云和隶属云发生器[J]. 计算机研究与发展, 1995, 32(6): 15-20.
[12]贾春玉, 白涛, 崔发军, 等. 基于云模型定性推理的液压弯辊板形控制[J]. 中国机械工程, 2014, 25(10): 1295-1298.
[13]Morimoto S, Shimmei A, Sanada M, et al. Position and speed sensorless control system of permanent magnet synchronous motor with parameter identification[J]. IEEJ Transactions on Industry Applications, 2006, 126: 748-755.
[14]Aranovskiy S, Bobtsov A A, Pyrkin A A, et al. Flux and Position Observer of Permanent Magnet Synchronous Motors with Relaxed Persistency of Excitation Conditions[J]. IFAC-PapersOnLine, 2015, 48(11): 301-306.
[15]Liu Z H, Zhang J, Li X H, et al. Immune co-evolution particle swarm optimization for permanent magnet synchronous motor parameter identification[J]. Acta Automatica Sinica, 2012, 38(10): 1698-1708.
[16]Yang X S, Deb S. Multiobjective cuckoo search for design optimization[J]. Computers & Operations Research, 2013, 40(6): 1616-1624.
[17]王庆喜, 储泽楠. 基于动态布谷鸟搜索算法的 PID 控制器参数优化[J]. 计算机测量与控制, 2015, 23(4): 1215-1217.
[18]Chandrasekaran K, Simon S P. Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm[J]. Swarm and Evolutionary Computation, 2012, 5: 1-16.
[19]Silva Filho T M, Pimentel B A, Souza R M C R, et al. Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization[J]. Expert Systems with Applications, 2015, 42(17): 6315-6328. |
|
|
|