|
|
Strain Measurement and Optimal Placement of Fiber Bragg Sensors in Adhesive Layer of Composites |
ZHANG Yu-yan1,REN Tian-xin1,WEN Yin-tang2,LIU Yong1,Liu Ze-liang3 |
1. Key Lab of Measurement Technology and Instrumentation of Hebei Province, Qinhuangdao, Hebei 066004, China
2. Institute of Defense Science and Technology,Yanshan University, Qinhuangdao, Hebei 066004, China
3. College of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract The composite materials for aeronautical application are usually assembled on the substrate surface by means of adhesion agent. It is inevitably to create a variety of defects and damage in the bonding and service process. The interface bonding quality has great influence on material’s preservation performance. In order to evaluate defect and damage in the adhesive layer, a method of optimal placement of fiber Bragg grating (FBG) sensor networks for strain monitoring of composite adhesive layer structures is proposed. Based on the principle of FBG strain sensing, Bragg wavelength shift law of FBG sensor under static loads is studied by simulations and experiments. According to the experimental results, the detection model which matches the actual characteristics of FBG sensor is established. On this basis, the particle swarm optimization algorithm that implements optimal arrangement of FBG sensing network is applied. Experimental show that sensor coverage has improved significantly as the position coordinates of FBG sensor is optimized.
|
Received: 30 May 2016
Published: 11 February 2018
|
|
|
|
|
[1]马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7):1787-1803.
[2]乔海涛, 邹贤武. 碳纤维复合材料的胶接工艺与性能[J]. 宇航材料工艺, 2009, 39(1):66-69.
[3]顾轶卓, 李敏, 李艳霞,等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797.
[4]王雪明, 谢富原, 李敏,等. 热压罐成型复合材料复杂结构对制造缺陷的影响规律[J]. 航空学报, 2009, 30(4):757-762.
[5]Farge L, Varna J, Ayadi Z. Damage characterization of a cross-ply carbon fiber/epoxy laminate by an optical measurement of the displacement field[J]. Composites Science & Technology, 2010, 70(1):94-101.
[6]杨振刚, 刘劲松, 王可嘉. 复合材料与钢板黏合面的太赫兹无损检测[J]. 无损检测, 2014,(4):42-44.
[7]Zalameda J N, Winfree W P, Yost W T. Air coupled acoustic thermography (ACAT) inspection technique[C]// AIP Conference Proceedings. 2008:467-474.
[8]SUN G K, ZHOU Z G, LI G H, et al. Development of an optical fiber-guided robotic laser ultrasonic system for aeronautical composite structure testing[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(12): 5135-5140.
[9]芦吉云, 梁大开, 陆观, 等. 光纤光栅传感器在CFRP冲击载荷监测中的应用研究[J]. 计量学报, 2011, 32(2):106-109.
[10]蔡璐璐,万玉良,吴飞. 高双折射光纤光栅扭转特性分析与应用[J]. 计量学报, 2016, 37(4): 342-346.
[11]常琦, 袁慎芳, 周恒保. 基于LS-SVMs机翼盒段壁板损伤辨识研究[J]. 压电与声光, 2009, 31(4):489-492.
[12]Kosters E, Els T J V. Structural health monitoring and impact detection for primary aircraft structures[C]// Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2006.
[13]Shrestha P, Kim J H, Park Y, et al. Impact localization on composite structure using FBG sensors and novel impact localization technique based on error outliers[J]. Composite Structures, 2016, 142: 263-271.
[14]Markmiller J F C, Chang F K, Markmiller J F C. Sensor Network Optimization for a Passive Sensing Impact Detection Technique[J]. Structural Health Monitoring, 2010, 9(1):25-39.
[15]王为, 林玉池, 沈小燕, 等. 基于自适应粒子群算法的光纤光栅传感器优化配置[J]. 天津大学学报(自然科学与工程技术版), 2010, 43(10):890-894.
[16]伊小素, 刘佳, 叶向宇,等. 基于概率模型的光纤光栅传感网络优化布置[J]. 光电工程, 2013,(01):78-83. |
|
|
|