1 |
张豪. 基于深度学习的行人车辆目标检测算法的研究 [D]. 扬州: 扬州大学, 2023.
|
3 |
ZHANG W, TANG J. Technology developing state and trend about advanced driving assistance system and calculating chip [C]//2022 4th International Academic Exchange Conference on Science and Technology Innovation(IAECST). Guangzhou, China, 2022: 938-943.
|
5 |
SUN P, BOUKERCHE A. Challenges and potential solutions for designing a practical pedestrian detection framework for supporting autonomous driving [C]//Proceedings of the 18th ACM Symposium on Mobility Management and Wireless Access. Alicante, Spain, 2020: 75-82.
|
6 |
LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector [C]//Computer Vision-ECCV 2016: 14th European Conference. Amsterdam, Netherlands, 2016: 21-37.
|
8 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii, USA, 2017: 7263-7271.
|
10 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection [C]//Proceedings of European Conference on Computer Vision(ECCV). Glasgow, UK, 2020: 2004, 10934.
|
9 |
REDMON J, FARHADI A. Yolov3: An incremental improvement [C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake, USA, 2018: 1804, 0276.
|
17 |
金梅, 任婷婷, 张立国, 等. 改进的轻量级行人目标检测算法 [J]. 计量学报, 2024, 45(2): 186-193. JIN M, REN T T, ZHANG L G, et al. An improved lightweight Pedestrian target detection algorithm [J]. Acta Metrologica Sinica, 2019, 45(2): 186-193.
|
4 |
MUHAMMAD K, ULLAH A, LLORET J, et al. Deep learning for safe autonomous driving: Current challenges and future directions [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(7): 4316-4336.
|
11 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada, 2023: 7464-7475.
|
13 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Columbus, USA, 2014: 580-587.
|
14 |
GIRSHICK R. Fast r-cnn [C]//Proceedings of the IEEE international conference on computer vision. Santiago, Chile, 2015: 1440-1448.
|
16 |
汪西晨, 彭富伦, 李业勋, 等. 基于改进Faster R-CNN的红外目标检测算法 [J]. 应用光学, 2024, 45(2): 346-353. WANG X C, PENG F L, LI Y X, et al. Infrared target detection algorithm based on improved Faster R-CNN [J]. Applied Optics, 2024, 45(2): 346-353.
|
18 |
ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [C]//Proceedings of the IEEE/CVF international conference on computer vision. Montreal, Canada, 2021: 2778-2788.
|
20 |
谈爱玲, 李晓航, 赵勇, 等. 基于偏振成像和YOLOv8的雾天道路目标检测 [J].计量学报, 2024,45(11):1626-1633. TAN A L, LI X H, ZHAO Y, et al. Detection of foggy road objects based on polarization imaging and YOLOv8 [J]. Acta Metrologica Sinica, 2024,45(11):1626-1633.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in neural information processing systems (NeurIPS). Long Beach, USA, 2017: 1706. 03762.
|
23 |
DAI X, CHEN Y, XIAO B, et al. Dynamic head: Unifying object detection heads with attentions [C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Online, 2021: 7373-7382.
|
2 |
岳颖, 程书波. 中国道路交通事故原因甄别与对策建议 [J]. 科技与创新, 2021 (4): 21-24. YUE Y, CHENG S B. Identification and Countermeasures of road traffic accidents in China [J]. Technology and Innovation, 2021 (4): 21-24.
|
7 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, USA, 2016: 779-788.
|
12 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//Proceedings of the IEEE international conference on computer vision. Venice, Italy, 2017: 2980-2988.
|
19 |
梁秀满, 周佳润, 杨若兰. LPD-YOLO: 轻量级遮挡行人检测模型 [J]. 计算机工程与科学, 2023, 45(12): 2197-2205. LIANG X M, ZHOU J R, YANG R L. LPD-YOLO: Lightweight Occlusion Pedestrian detection Model [J]. Computer Engineering and Science, 2023, 45(12): 2197-2205.
|
22 |
XIA Z, PAN X, SONG S, et al.Vision transformer with deformable attention[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New Orleans, USA, 2022: 4794-4803.
|
15 |
REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks [J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6): 1137-1149.
|