11 |
HADDAD R. A resistor calculable from DC to 105 rad/s[D]. Washington: Universite Georges Washington, 1969.
|
2 |
KIM D B, SHIN S S, KIM W S, et al. A digital bridge evaluation up to 100 kHz for precision impedance measurements[J]. IEEE Trans Instrum & Meas, 2023, 72: 1004805.
|
10 |
GIBBINGS D L H. A design for resistors of calculable a.c./d.c. resistance ratio[J]. Electrical Engineers, Proceedings of the Institution of, 1963, 110(2): 335-347.
|
17 |
BOHACEK J, WOOD B M. Octofilar resistors with calculable frequency dependence[J]. Metrologia, 2001, 38(3):241-247.
|
4 |
MORENO J A, GOURNAY P, ROLLAND B, et al. Characterization of the frequency dependence of the ac resistors used in the quadrature bridge of the BIPM[J]. IEEE Trans Instrum & Meas, 2021, 70: 1003005.
|
9 |
黄璐, 杨雁, 陆祖良, 等. 采用电补偿方案的新一代立式计算电容装置[J]. 计量学报, 2020, 41(3): 279-283. HUANG L, YANG Y, LU Z L, et al. The new vertical calculable cross-capacitor by adopting the novel electrical compensation approach[J]. Acta Metrologica Sinica, 2020, 41(3): 279-283.
|
5 |
黄晓钉, 王忠伟,蔡建臻, 等. 交流量子电阻传递电桥的研制[J]. 中国测试, 2022, 48(11): 138-144. HUANG X D, WANG Z W, CAI J Z, et al. Development of ac quantum Hall resistance transfer bridge[J]. China Measurement & Test, 2022, 48(11): 138-144.
|
15 |
SEMYONOV Y P, KLEBANOV I. Bifilar AC-DC resistor using a microwire[J]. IEEE Trans Instrum & Meas, 1997, 46(2): 333-336.
|
19 |
ZHAO J T, YANG Y, LU Y F, et al. An improved bootstrap method for the calibration of inductive voltage dividers[C]// CPEM 2012 Conf. 2012.
|
13 |
KIBBLE B P. Four terminal-pair to anything else[C]// IEE Colloquium on Interconnections from DC to Microwaves.1999.
|
1 |
AGUSTONI M, PREVILLE S D, OVERNEY F. Broadband calculable coaxial resistors[J]. IEEE Trans Instrum & Meas, 2023, 72: 1501510.
|
20 |
AWAN S, KIBBLE B, SCHURR J, et al. Coaxial electrical circuits for interference-free measurements[M]. London: IET, 2011.
|
16 |
BOHACEK J, KUEERA J, SEDLACEK R. Testing calculable resistors of quadrifilar design[C]// CPEM 2008 Conf. 2008.
|
7 |
LAI L, FENG J, SHI L B. Quasi-balance four-terminal resistance bridge[J]. IEEE Trans Instrum & Meas, 2015, 64(6): 1636-1641.
|
14 |
TONG Y Z, HUANG X D. A design for four-terminal-pair resistor with calculable frequency difference[C]//ICEM 2015 Conf. 2015.
|
18 |
LI Z K, HE Q, HUANG L, et al. A new type of AC-DC difference calculable resistance[J]. Acta Metrologica Sinica, 2008(1): 5-9.
|
8 |
HUANG L, YANG Y, LU Z L, et al. Practical application of latest optimal hollow active auxiliary electrode in vertical calculable cross-capacitor at NIM[J]. IEEE Trans Instrum & Meas, 2019, 68(6): 2144-2150.
|
3 |
WANG Y C, HAFNER A, JARRETT D, et al. A two-tone digital impedance bridge[C]//CPEM 2022 Conf. Wellington, New Zealand, 2022.
|
6 |
CALLEGARO L, D’ELIA V, KUCERA J, et al. Self-compensating networks for four-terminal-pair impedance definition in current comparator bridges[J]. IEEE Trans Instrum & Meas, 2016, 65(5): 1149-1155.
|
12 |
白天, 王书涛, 杨雁, 等. 四端对同轴型计算电阻及其量值传递的研究[J]. 仪器仪表学报, 2022, 43(2): 84-91. BAI T, WANG S T, YANG Y, et al. Research on the four terminal-pair coaxial calculable resistor and its value transmission[J]. Chinese Journal of Scientific Instrument, 2022, 43(2): 84-91.
|