|
|
Research on Improved FFT Algorithm in Frequency Domain Fully Focused Ultrasound Imaging |
ZHOU Yinggang1,LIU Zhenxing2,LIANG Jingliang2,WANG Shanhui3,LI Jifeng1,WU Meina1 |
1. School of Information Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870, China
2. Guizhou Power Grid Limited Liability Company Zunyi Power Supply Bureau,Zunyi, Guizhou 563000, China
3.School of Electrical and Automation Engineering, Liaoning University of Science and Technology, Benxi, Liaoning 117004, China |
|
|
Abstract At present, time-domain ultrasonic imaging algorithms are commonly used for ultrasonic imaging detection of hole defects in steel blocks. The delay stacking process in the method requires repetitive and tedious iterative operations, which cannot meet the requirements of high-quality real-time imaging. The frequency domain ultrasound imaging algorithm has higher imaging resolution and faster imaging speed. A radix 2-FFT input hierarchical truncation algorithm for any non zero value input was proposed, and the algorithm was applied to the frequency domain FMC-PSM algorithm for imaging, resulting in an improved FMC-PSM algorithm for ultrasonic imaging of hole defects in steel blocks. The experimental results show that compared to the standard FMC-PSM algorithm, the improved frequency domain FMC-PSM algorithm can present higher quality images while increasing the imaging speed by 15%, which is expected to solve the problem of difficult balance between imaging quality and imaging efficiency in ultrasound imaging.
|
Received: 26 July 2023
Published: 23 May 2024
|
|
|
|
|
[2] |
周正干, 李洋, 周文彬. 相控阵超声后处理成像技术研究、应用和发展[J]. 机械工程学报, 2016, 52(6): 1-11.
|
[4] |
GAZDAG J. Wave equation migration with the phase-shift method[J]. Geophysics, 1978, 43(7): 1342-1351.
|
[6] |
吴海腾. 基于相控阵超声成像的圆柱类部件自动化无损检测理论与实践的研究[D]. 杭州: 浙江大学, 2016.
|
[11] |
冒秋琴, 陈尧, 石文泽, 等. 频域相位相干合成孔径聚焦超声成像研究[J]. 仪器仪表学报, 2020, 41(2): 135-145.
|
[12] |
王冠, 黄丽霞, 王志刚, 等. 提高频域合成孔径超声阵列成像质量的方法[J]. 传感技术学报, 2020, 33(9): 1285-1291.
|
|
ZHOU Z G, LI Y, ZHOU W B. Research, application and development of phased array ultrasound postprocessing imaging technology [J]. Journal of Mechanical Engineering, 2016, 52 (6): 1-11.
|
|
CHEN Y, MAO Q Q, SHI W Z, et al. Frequency domain synthetic aperture focused ultrasound imaging of irregular double-layer media based on virtual sources [J]. Chinese Journal of Scientific Instrument, 2019, 40 (6): 48-55.
|
|
CHEN Y, MAO Q Q, SHI W Z, et al. Research on TOFD imaging detection of thick wall welds based on phase coherence [J]. Journal of Mechanical Engineering, 2019, 55 (4): 25-32.
|
[9] |
陈尧, 冒秋琴, 陈果, 等. 基于Omega-K算法的快速全聚焦超声成像研究[J]. 仪器仪表学报, 2018, 39(9): 128-134.
|
[13] |
周航锐, 孙坚, 徐红伟, 等. 基于EEMD和低秩稀疏分解的超声缺陷回波检测方法[J]. 计量学报, 2022, 43(1): 77-84.
|
[14] |
方立德, 孔恒正, 韩棒棒, 等. 基于阵列超声传感器的气液界面检测[J]. 计量学报, 2022, 43(12): 1616-1621.
|
|
FANG L D, KONG H Z, HAN B B, et al. Gas-liquid interface detection based on array ultrasonic sensors [J]. Acta Metrologica Sinica, 2022, 43 (12): 1616-1621.
|
[16] |
梁东. 基于FPGA的基2DIT-FFT蝶形运算设计与实现[J]. 信息通信, 2020 (7): 41-43.
|
[17] |
杨春. 分层物体的合成孔径聚焦超声成像技术研究[D]. 北京: 清华大学, 2014.
|
[5] |
OLOFSSON T. Phase shift migration for imaging layered objects and objects immersed in water[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2010, 57(11): 2522-2530.
|
[7] |
陈尧, 冒秋琴, 石文泽, 等. 基于虚拟源的非规则双层介质频域合成孔径聚焦超声成像[J]. 仪器仪表学报, 2019, 40(6): 48-55.
|
|
MAO Q Q, CHEN Y, SHI W Z, et al. Research on frequency domain phase coherent synthetic aperture focused ultrasound imaging [J]. Chinese Journal of Scientific Instrument, 2020, 41 (2): 135-145.
|
|
LIANG D. Design and implementation of Base 2DIT-FFT Butterfly operation based on FPGA [J]. Information Communication, 2020(7): 41-43.
|
[1] |
VERKOOIJEN J, BOULAVINOV A. Sampling phased array—a new technique for ultrasonic signal processing and imaging[J]. Insight Non Destructive Testing & Condition Monitoring, 2008, 50(3): 153-157.
|
[3] |
周正干, 彭地, 李洋, 等. 相控阵超声检测技术中的全聚焦成像算法及其校准研究[J]. 机械工程学报, 2015, 51(10): 1-7.
|
|
ZHOU Z G, PENG D, LI Y, et al. Research on the full focus imaging algorithm and its calibration in phased array ultrasonic testing technology [J]. Journal of Mechanical Engineering, 2015, 51 (10): 1-7.
|
[8] |
陈尧, 冒秋琴, 石文泽, 等. 基于相位相干性的厚壁焊缝TOFD成像检测研究[J]. 机械工程学报, 2019, 55(4): 25-32.
|
|
CHEN Y, MAO Q Q, CHEN G, et al. Research on fast full focus ultrasound imaging based on Omega-K algorithm [J]. Chinese Journal of Scientific Instrument, 2018, 39 (9): 128-134.
|
[10] |
MAO Q Q, CHEN Y, CHEN M, et al. A Fast Interface Reconstruction Method for Frequency-Domain Synthetic Aperture Focusing Technique Imaging of Two-Layered Systems with Non-planar Interface Based on Virtual Points Measuring[J]. Journal of Nondestructive Evaluation, 2020, 39(10): 310-323.
|
[15] |
朱时雨, 王月兵, 赵鹏, 等. 基于激光全息法的聚焦换能器近场声特性分析[J]. 计量学报, 2022, 43(11): 1480-1485.
|
|
WANG G, HUANG L X, WANG Z G, et al. Methods for improving the imaging quality of frequency domain synthetic aperture ultrasound arrays [J]. Journal of Sensing Technology, 2020, 33 (9): 1285-1291.
|
[18] |
邹游. 快速傅里叶变换裁剪算法[D]. 广州: 华南理工大学, 2017.
|
|
ZHOU H R, SUN J, XU H W, et al. Ultrasonic defect echo based on EEMD and low rank sparse decomposition. Detection method [J]. Acta Metrologica Sinica, 2022, 43 (1): 77-84.
|
|
ZHU S Y, WANG Y B, ZHAO P, et al. Analysis of near-field acoustic characteristics of focused transducers based on laser holography [J]. Acta Metrologica Sinica, 2022, 43 (11): 1480-1485.
|
|
|
|