|
|
Ultra-close Vehicle Chassis Imaging Measurement under Non-uniform Speed |
ZHANG Yueying1,YIN Qihao2,JING Genqiang2,YAN Luxin3,WANG Xiangxun2 |
1. Zhejiang Testing & Inspection Institute for Mechanical and Electrical Products Quality Co. Ltd, Hangzhou,
Zhejiang 310051, China
2. Research Institute of Highway, Ministry of Transport, Beijing 100088, China
3. National Key Lab of Multispectral Information Intelligent Processing Technology,Huazhong University of Science and Technology, Wuhan, Hubei 430074, China |
|
|
Abstract Aiming at the technical problems of axle-type recognition under the condition of non-uniform vehicle speed, such as ultra-close distance, large area, and low distortion imaging, a method of ultra-close imaging correction and mosaic for vehicle chassis with speed-adaptive ability is proposed. The ultra-wide-angle image sequences of a moving vehicle chassis are collected by a fish-eye camera, and a method of circle fitting by multi-sample points is proposed to extract the region of interest (ROI). The method for image distortion correction is then performed using an isometric projection model based on the 3D imaging geometry model. Aiming at the problem of vehicles non-uniform speed, which leads to large range of the overlap area between videos adjacent frames, a multi-step layered key frame extraction is carried out with image content overlap analysis technology, avoiding the influence of uneven image distribution on mosaic results. The experimental results show that the proposed method can obtain clear and complete vehicle chassis images with lower distortion at the distance of 20~50cm under the condition of non-uniform vehicle speed, with a 5% average measuring error of the vehicle axles distance.
|
Received: 04 May 2023
Published: 21 February 2024
|
|
|
|
|
[2] |
段发阶, 吴冰颖, 梁春疆, 等. 基于激光阵列的运行车辆宽度投影轮廓在线测量方法[J]. 测控技术, 2020, 39(8): 70-75.
|
|
HU S R, ZHOU B W, ZHANG T Y. Spatio-temporal Analysis of Oversize-Overweight (OSOW) Vehicle based on Transportation Big Data[J]. Highway, 2020, 65(8): 349-359.
|
|
DUAN F J, WU B Y, LIANG C J, et al. On-Line Measurement Method of Vehicle Width Projection Contour Based on Laser Array[J]. Measurement & Control Technology, 2020, 39(8): 70-75.
|
[5] |
陈铭, 陈新, 余辉敏. SSD网络算法模型在车辆轴型识别中的应用[J]. 兵器装备工程学报, 2021, 42(8): 227-232.
|
[9] |
LO I C, SHIH K T, CHEN H H. Efficient and Accurate Stitching for 360° Dual-Fisheye Images and Videos[J]. IEEE Transactions on Image Processing, 2022, 32(1): 251-262.
|
[10] |
WEI X, WEI Y, LU X B. RMDC: Rotation-mask deformable convolution for object detection in top-view fisheye cameras[J]. Neurocomputing, 2022, 504(1): 99-108.
|
[12] |
刘善磊, 赵银娣, 王光辉, 等. 一种关键帧的自动提取方法[J]. 测绘科学, 2012, 37(5): 110-112, 115.
|
[4] |
曾夏明, 何家雄, 曹林根, 等. 基于激光雷达车检器的车型识别研究[J]. 中国工程机械学报, 2021, 19(4): 324-330.
|
[14] |
梁建胜, 温贺平. 基于深度学习的视频关键帧提取与视频检索[J]. 控制工程, 2019, 26(5): 965-970.
|
|
LU X P, LU Y, JIAO J L, et al. Key Frame Extraction Algorithm for Video Images Based on Correlation Coefficient of Overlap Regions [J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 260-267.
|
|
LIANG J S, WEN H P. Key Frame Abstraction and Retrieval of Videos Based on Deep Learning[J]. Control Engineering of China, 2019, 26(5): 965-970.
|
[16] |
WANG X, ZOU J , SHI D S. An Improved ORB Image Feature Matching Algorithm Based on SURF[C]// 2018 3rd International Conference on Robotics and Automation Engineering (ICRAE). Guangzhou, China, 2018.
|
|
HAN S, CHEN X R, ZHANG C X, et al. Research on Material Counting Method Based on Improved Template Matching Algorithm[J]. Acta Metrologica Sinica, 2022, 43(7): 863-868.
|
|
YU Y, FU Y X, YANG C D, et al. Fine-Grained Car Model Recognition Based on FR-ResNet [J]. Acta Automatica Sinica, 2021, 47(5): 1125-1136.
|
|
SONG J Y, CHI Z X, ZHANG X P, et al. Tree Height Measurement Method Based on Fisheye Lens[J]. Science Technology and Engineering, 2021, 21(13): 5424-5431.
|
[18] |
谭芳, 穆平安, 马忠雪. 基于YOLOv3检测和特征点匹配的多目标跟踪算法[J]. 计量学报, 2021, 42(2): 157-162.
|
|
LIANG C J, DUAN F J, YANG Y, et al. A Vehicle Outer Contour Dimension Measuring Method Based on Computer Vision Technology [J]. Photoelectric Engineering, 2016, 43(1): 42-48, 54.
|
|
CHENG S H, GAO X, ZHOU B. Vehicle Recognition Based on Multi-feature Extraction and SVM Parameter Optimization [J]. Acta Metrologica Sinica, 2018, 39(3): 348-352.
|
[8] |
高翔. 基于线阵式摄像机车底扫描方法的设计与实现[D]. 南京: 南京大学, 2016.
|
[13] |
卢小平, 卢遥, 焦金龙, 等. 基于重叠区域相关系数的视频影像关键帧提取算法[J]. 武汉大学学报 ( 信息科学版), 2019, 44(2): 260-267.
|
|
LIU S L, ZHAO Y D, WANG G H, et al. A Method for Automatic Extraction of Key Frames[J]. Science of Surveying and Mapping, 2012, 37(5): 110-112, 115.
|
[15] |
KASA I. A circle fitting procedure and its error analysis[J]. IEEE Transactions on Instrumentation & Measurement, 1976, IM-25(1): 8-14.
|
|
TAN F, MU P A, MA Z X. Multi-target Tracking Algorithm Based on YOLOv3 Detection and Feature Point Matching[J]. Acta Metrologica Sinica, 2021, 42(2): 157-162.
|
|
CHEN M, CHEN X, YU H M. Application of SSD Network Algorithm Model in Vehicle Axle Type Recognition[J]. Journal of Sichuan Ordnance, 2021, 42(8): 227-232.
|
|
ZENG X M, HE J X, CAOL G, et al. Research on vehicle recognition based on laser radar vehicle inspector[J]. Chinese Journal of Construction Machinery, 2021, 19(4): 324-30
|
[17] |
韩硕, 陈晓荣, 张彩霞, 等. 基于改进模板匹配算法的物料计数方法研究[J]. 计量学报, 2022, 43(7): 863-868.
|
[1] |
胡斯然, 周博闻, 张天宇. 基于交通大数据的超限超载车辆时空分析[J]. 公路, 2020, 65(8): 349-359.
|
[3] |
梁春疆, 段发阶, 杨毅, 等. 车辆外廓尺寸计算机视觉动态测量[J]. 光电工程, 2016, 43(1): 42-48, 54.
|
[6] |
余烨, 傅云翔, 杨昌东, 等. 基于FR-ResNet的车辆型号精细识别研究[J]. 自动化学报, 2021, 47(5): 1125-1136.
|
[7] |
程淑红, 高许, 周斌. 基于多特征提取和SVM参数优化的车型识别[J]. 计量学报, 2018, 39(3): 348-352.
|
[11] |
宋佳音, 池志祥, 张晓鹏, 等. 基于鱼眼镜头的树高测量方法[J]. 科学技术与工程, 2021, 21(13): 5424-5431.
|
|
|
|