|
|
Research on Vehicle Multi-target Tracking Algorithm Based on UAV Aerial Video |
ZHU Qiguang1,2,SHANG Jian1,LIU Bo1,CEN Qiang1,CHEN Weidong1,2 |
1.School of Information Science and Engineering,Yanshan University, Qinhuangdao, Hebei 066004,China
2.Hebei Provincial Key Laboratory of Special Optical Fibers and Fiber Optic Sensing, Qinhuangdao, Hebei 066004, China |
|
|
Abstract In order to improve the vehicle multi-target tracking accuracy under the UAV vision platform, a UAV visual vehicle multi-target tracking algorithm that combines the improved YOLOv7 network with the optimized ByteTrack algorithm is proposed. Firstly, in view of the situation where the features of small targets are not obvious, the feature extraction ability of shallow semantic information of the YOLOv7 network is enhanced, and SIoU-Loss is used to optimize the coordinate loss function to speed up the convergence speed of the anchor frame.secondly, according to the vehicle motion characteristics, in based on the ByteTrack algorithm, the state vector of the Kalman filter algorithm is integrated into the acceleration information. finally, the effectiveness of the algorithm is verified on the VisDrone2021 data set. The experimental results indicate that the average detection accuracy of the improved YOLOv7 network is 3.2% higher than the original network, the accuracy of the tracking algorithm is 1.2% higher than the baseline algorithm, and the high-order tracking accuracy is improved by 2.9%.
|
Received: 28 November 2023
Published: 18 December 2024
|
|
|
|
|
[5] |
BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]//IEEE International Conference on Image Processing(ICIP). Phoenix, AZ, USA, 2016.
|
[3] |
储琪. 基于深度学习的视频多目标跟踪算法研究[D]. 合肥: 中国科学技术大学, 2019.
|
[1] |
金沙沙, 龙伟, 胡灵犀, 等. 多目标检测与跟踪算法在智能交通监控系统中的研究进展[J]. 控制与决策, 2023, 38(4): 890-901.
|
[8] |
余仁伟, 朱浩, 蔡昌恺. 基于薄板样条函数的无人机多目标跟踪算法[J]. 仪器仪表学报, 2021, 42(3): 168-176.
|
[15] |
GEVORGYAN Z. SIoU Loss: More Powerful Learning for Bounding Box Regression[J]. arXiv, 2022:2205.12740.
|
[2] |
王旭辰, 韩煜祺, 唐林波, 等. 基于深度学习的无人机载平台多目标检测和跟踪算法研究[J]. 信号处理, 2022, 38(1): 157-163.
|
[18] |
BERNARDIN K, Stiefelhagen R. Evaluating multiple object tracking performance: The CLEAR MOT Metics[J]. Eurasip Journal on Image and Video Processing, 2008: 246309.
|
[6] |
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]// IEEE International Conference on Image Processing. Beijing, China, 2017.
|
|
XUE J T, MA R H, HU C F. Multi-objective Tracking Deep Learning Algorithm Based on MobileNet[J]. Control and Decision, 2021, 36(8): 1991-1996.
|
|
LUO X, ZHAO R, ZHUANG H S, et al. UAV multi-target tracking algorithm jointly optimized by YOLOv5 and Deep-SORT[J]. Signal Processing, 2022, 38(12): 2628-2638.
|
[12] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Hono lulu, HI, USA, 2017.
|
[13] |
LIU S, QI L, QIN H, et al. Path Aggregation Network for Instance Segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018.
|
[17] |
ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analy sis and Machine Intelligence, 2021, 43(10): 7380-7399.
|
|
JIN S S, LONG W, HU L X, et al. Research progress of detection and multi-object tracking algorithm in intelli gent traffic monitoring system[J]. Control and Decision, 2023, 38(4): 890-901.
|
[7] |
AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: Robust Associations Multi-Pedestrian Tracking[J]. arXiv, 2022:2206.14651.
|
[9] |
薛俊韬, 马若寒, 胡超芳. 基于MobileNet的多目标跟踪深度学习算法[J]. 控制与决策, 2021, 36(8): 1991-1996.
|
[14] |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Confe rence on Computer Vision(ICCV). Seoul, South Korea, 2019.
|
|
WANG X C, HAN Y Q, TANG L B, et al. Multi Target Dete ction and Tracking Algorithm for UAV Platform Based on Deep Learning[J]. Journal of Signal Processing, 2022, 38(1): 157-163.
|
[4] |
WANG Z, ZHENG L, LIU Y, et al. Towards Real-Time Multi-Object Tracking[C]//Computer Vision-ECCV 2020. Glasgow, UK, 2020.
|
[10] |
罗茜, 赵睿, 庄慧珊, 等. YOLOv5与Deep-SORT联合优化的无人机多目标跟踪算法[J]. 信号处理, 2022, 38(12): 2628-2638.
|
[11] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors[C]//2023 IEEE/CVF Confer ence on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada, 2023.
|
[19] |
LUITEN J, OSEP A, DENDORFER P, et al. Hota: Ahigher order metric for evaluating multi-object tracking[J]. International journal of computer vision, 2021, 129(2): 548-578.
|
[21] |
NEUBECK A, GOOL L V. Efficient Non-Maximum Suppre ssion[C]// 18th International Conferenceon Pattern Reco nition. New York, USA, 2006.
|
|
YU R W, ZHU H, CAI C K. UAV multi-target tracking algorithm based on thin plate spline function[J]. Chinese Journal of Scientific Instrument, 2021, 42(3): 168-176.
|
[16] |
ZHANG Y, SUN P, JIANG Y, et al. ByteTrack: Multi-object Tracking by Associating Every Detection Box[C]//Computer Vision-ECCV 2022. Tel Aviv, Israel, 2022.
|
[20] |
MUSTAPHA A, MOHAMED L, ALI K. An Overview of Gradient Descent Algorithm Optimization in Machine Learning: Application in the Ophthalmology Field[C]// Smart Applications and Data Analysis. Marrakesh, Morocco, 2020.
|
|
|
|