|
|
Study on Fiber Length Standard Device and Correction of Experimental Results |
YUAN Weibing1,2,3,MENG Fei2,3,LIN Baike2,3,YANG Kai1,CHEN Liang1,FANG Zhanjun2,3 |
1. College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Division of Time and Frequency Metrology, National Institute of Metrology, Beijing 100029, China
3. Key Laboratory of State Administration for Market Regulation (Time Frequency and Gravity Primary Standard), Beijing 100029, China |
|
|
Abstract In order to meet the domestic length metrological requirements of optical time-domain reflectometer (OTDR),a fiber length standard based on the principle of the modulation phase shift technique is realized,which adopts a modular design,including the main system units such as the laser driver,signal modulation,photoelectronic conversion and frequency conversion,as well as the length measurement capability of 1550nm window.By independently measuring the fiber temperature correction coefficient and wavelength correction coefficient the normalized corrections of fiber length changes caused by different temperature and wavelength of the test light source in communication window are realized,compared to other research results of fiber length standard reported in China,as well as a complete uncertainty evaluation,which provide experimental evidences,new ideas and methods for the traceability of fiber length in the field of OTDR calibration.The measurement uncertainties are U=(0.016+7.2×10-6L)m(k=2)at 1310nm,and U=(0.028+7.2×10-6L)m(k=2) at 1550nm respectively.And the uncertainty of calibrating by this standard a 14km fiber used to OTDR transmission standard is 0.13m(k=2),which is twice as good as the original device.
|
Received: 23 February 2024
Published: 18 December 2024
|
|
|
|
|
[2] |
孙小强, 刘丽, 傅栋博, 等. 光时域反射计测量范围和光回波损耗的检定装置 [J]. 计量技术, 2019(6): 30-32.
|
|
ZHU X B, SUN Q S, ZHENG X L,et al. Highly accurate fiber length measurement technique based on modulated phase shift method [J]. Acta Photonica Sinica. 2016, 45(7): 73-77.
|
[13] |
林林. 光纤马赫-曾德尔干涉仪干涉长度的精确测量 [J]. 光电子技术与信息, 2006(3): 23-27.
|
|
Optical Time Domain Reflectometer (OTDR) Calibration Specification: JJG 959—2001 [S]. Beijing: Standards Press of China, 2001.
|
[6] |
高业胜, 郑光金. 光时域反射计校准及其测量不确定度分析 [J]. 宇航计测技术, 2010, 30(5): 73-78.
|
[7] |
朱兴邦, 孙权社, 郑祥亮, 等. 基于调制相移法的高准确度光纤长度测量技术 [J]. 光子学报, 2016, 45(7): 73-77.
|
|
LIN L. Accurate measurement of the interference length of fiber-optic Mach-Zundel interferometer [J]. Optoelectronic Technology & Information, 2006(3): 23-27.
|
|
GUO S Q, MA J, ZHANG J G, et al. Chaos-pulse hybrid signal optical time-domain reflectometer [J]. Journal of Applied Optics, 2017, 38(4): 569-574.
|
[3] |
WANG Y, WANG X J, LI X L. OTDR-based optical fiber bending and tensile loss analysis[J]. Optoelectronics Letters, 2023, 19(3), 164-169.
|
[8] |
DENNIS T, JIMENEZ J. Optical Fiber Time Delay Comparison Between NIST and LAMETRO [J]. Journal of Research of the National Institute of Standards and Technology, 2021, 126:126040.
|
|
ZHANG Y Y, SUN X Q, FU D B, et al. Accurate measurement of fiber length based on Gaussian optical pulse delay technique [J]. Acta Metrologica Sinica, 2015, 36(1): 10-13.
|
|
ZHU J G, GUO T H, ZHANG T, et al. Temperature error in length measurement method based on photoelectric oscillator [J]. Infrared and Laser Engineering, 2014, 43(1): 254-259.
|
[15] |
ZHOU J, HUANG T, FANG Z, et al. Laser diode-pumped compact hybrid lithium niobate microring laser. [J]. Optics letters, 2022, 47(21): 5599-5601.
|
[18] |
ZOU F, ZOU L, TIAN Y, et al. Reciprocal Phase Transition Electro-Optic Modulation [J]. Laser & Photonics Reviews, 2023, 17(4): 2200577.
|
[20] |
光时域反射计(OTDR)检定规程: JJG 959—2001[S]. 北京: 中国标准出版社, 2001.
|
[21] |
梅明城, 韩琪娜, 施杨, 等. 小型化硅基微腔光子测温系统 [J]. 计量学报, 2023, 44(7): 1208-1213.
|
[4] |
IEC. Calibration of optical time-domain reflectometers (OTDR)—Part 1: OTDR for single mode fibers: IEC 61746-1 [S]. Geneva, Switzerland: International Electrotechnical Commission Press, 2009.
|
[9] |
TERRA O, HUSSEIN H. Accurate fiber length measurement using time-of-flight technique [J]. Journal of Optical Communications, 2016, 37(2): 187-191.
|
[11] |
WALKER B. Calibration and use of Optical Time Domain Reflectometers(OTDR) [R]. Measurement Good Practice Guide, 2000.
|
[19] |
李嘉豪, 孙建平, 李婷, 等. 集成电路用NTC热敏电阻温度计校准方法研究 [J]. 计量学报, 2023, 44(8): 1208-1213.
|
[1] |
郭双琦, 马珺, 张建国, 等. 混沌-脉冲混合信号光时域反射仪 [J]. 应用光学, 2017, 38(4): 569-574.
|
|
SUN X Q, LIU L, FU D B, et al. Calibration device for measuring range and optical return loss of optical time-domain reflectometer [J]. Measurement Technology, 2019(6): 30-32.
|
[5] |
FANG Y, QIAN J, WANG M, et al. Distance scale calibration of optical fiber OTDR [C]// SPIE. Fiber Optic Components and Optical Communication II. Bellingham, US, 1998, 3552: 108-113.
|
|
GAO Y S, ZHENG G J. Calibration and Measurement Uncertainty Analysis of Optical Time Domain Reflectometer [J]. Journal of Astronautic Metrology and Measurement, 2010, 30(5): 73-78.
|
[10] |
张颖艳, 孙小强, 傅栋博, 等. 基于高斯光脉冲延迟技术的光纤长度精确测量方法 [J]. 计量学报, 2015, 36(1): 10-13.
|
[12] |
邾继贵, 郭庭航, 张涛, 等. 基于光电振荡器的长度测量方法温度误差 [J]. 红外与激光工程, 2014, 43(1): 254-259.
|
[14] |
ZHANG Z Y, KUSHIMOTO M, YOSHIKAWA A, et al. Key temperature-dependent characteristics of AlGaN-based UV-C laser diode and demonstration of room-temperature continuous-wave lasing[J]. Applied Physics Letters, 2022, 121(22): 222103.
|
[16] |
YAN Y, ZHENG Y, CHEN S, et al. Research on the influence mechanism and modification technology of UV-curing adhesive on the HPLD thermal-induced misalignment [J]. International Journal of Adhesion and Adhesives, 2023, 121: 103320.
|
[17] |
HE M, XU M, REN Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit/s and beyond [J]. Nature Photonics, 2019, 13(5): 359-364.
|
|
LI J H, SUN J P, LI T, et al. Research on the calibration method of NTC thermistor thermometers for integrated circuits [J]. Acta Metrologica Sinica, 2023, 44(8): 1208-1213.
|
|
MEI M C, HAN Q N, SHI Y, et al. Miniaturized silicon-based microcavity photon temperature measurement system [J]. Acta Metrologica Sinica, 2023, 44(7): 1208-1213.
|
|
|
|