|
|
Development of Spatial Resolution Standard for Metrological Micron X-ray Coordinate Measuring Machine |
WANG Yunxiang1,WANG Zhen1,SHI Yushu2,HU Jiacheng3,TAN Haochen3,FANG Dan1,FU Chen1,HUANG Hongping1,SUN Baojun1,WANG Jun1 |
1. Suzhou Institute of Metrology, Suzhou, Jiangsu 215126, China
2. National Institute of Metrology, Beijing 100029, China
3. Colloge of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China |
|
|
Abstract Aiming at the problem that the spatial resolution standard of X-ray coordinate measuring machine cannot be traced, the development and calibration method of the spatial resolution standard of X-ray coordinate measuring machine are studied.Firstly, based on the wire-to-card method, a regularly traceable grid standard is developed by lithography and inductively coupled plasma (ICP) etching.Secondly, the measurement traceability of the standard is realized by scanning electron microscope. The grid period of standard are 4~40μm, and the uniformity is up to 0.1%, which can meet the current metrological X-ray coordinate measuring machine spatial resolution traceability requirements. Finally, the detachable package protection structure is designed and prepared by 3D printing technology, which is convenient for the popularization and use of the standard in the industry. The above method is helpful to improve the calibration work of X-ray coordinate measuring machine and improve the accuracy level at present.
|
Received: 17 November 2023
Published: 30 September 2024
|
|
|
|
|
[2] |
王佳, 吴金杰, 康玺, 等. 工业CT空间分辨力与密度分辨率测试方法研究[J]. 核电子学与探测技术, 2015, 35(8): 788-791.
|
[7] |
陈思文, 施玉书, 张欣宇, 等. 工业CT二维空间分辨力的校准方法[J]. 纳米技术与精密工程, 2017, 15(6): 494-498.
|
[13] |
李琦, 潘仁雪, 臧睿, 等. 3D打印的医用材料在组织修复与治疗中的应用[J]. 工业微生物, 2023, 53(3): 4-6.
|
[1] |
郭智敏, 倪培君, 曹玉玲, 等. 工业CT系统空间分辨率两种测试方法分析与评价[J]. CT理论与应用研究, 2015, 24(03): 393-399.
|
[5] |
黄锦锋, 陈晓朝, 王宏. 口腔锥形束CT关键参数检测方法的研究[J]. 计量学报, 2021, 42(03): 375-379.
|
[6] |
皮磊, 施玉书, 高思田, 等. 基于球板标准器的X射线坐标测量机校准方法[J]. 计量学报, 2017, 38(6A): 104-107.
|
[11] |
夏春晓, 盛洁, 杨军, 等. 大厚度硅结构高精度干法刻蚀技术研究[J]. 导航定位与授时, 2015, 2(3): 96-101.
|
|
QI Z C, NI P J, JIANG W, et al. Spatial Resolution Measurement of Industrial CT System Based on Equal Diameter Circumscribed Circle Phantom[J]. Opticls and Precision Engineering, 2021, 29(1): 61-71.
|
[4] |
刘清华, 李敬, 单李军, 等. 10 lp/mm空间分辨率高能CT系统[J]. 强激光与粒子束, 2022, 34(12): 96-97.
|
|
YANG Q G, TAN B Z. Development and Application of High-performacne Cone-beam Industrial X-ray CT System[J]. Optics and Precision Engineering, 2023, 31(6): 804-812.
|
[9] |
ZANINI F, CARMIGNOTO S. Two-spheres Method for Evaluating the Metrological Structural Resolution in Dimensional Computed Tomography[J]. Measurement Science&Technology, 2017, 28(11): 114002.
|
[12] |
刘方方, 展明浩, 许高斌, 等. ICP硅深刻蚀槽壁垂直度的研究[J]. 微纳电子技术, 2015, 52(3): 185-190.
|
[3] |
齐子诚, 倪培君, 姜伟, 等. 基于等径外切圆的工业CT系统空间分辨率测试[J]. 光学精密工程, 2021, 29(1): 61-71.
|
[8] |
阳庆国, 谭伯仲. 高性能锥束工业X射线CT系统研制与应用[J]. 光学精密工程, 2023, 31(6): 804-812.
|
[14] |
张新明, 李翰威, 王浩文, 等. CT多功能检测模体设计与3D打印制作研究[J]. 放射学实践, 2023, 38(9): 1189-1194.
|
[15] |
FANG Z, WANG R B, WANG M Y, et al. Effect of Reconstruction Algorithm on the Identification of 3D Printing Polymers Based on Hyperspectral CT Technology Combined with Artificial Neural Network[J]. Materials, 2020, 13(8): 1963.
|
|
DAI J, XU Z B, LI T F. Progress in 3D Micro-nano Printing Technology and Its Application[J]. China Plastics Industry, 2016, 44(5): 1-5.
|
|
GUO Z, NI P J, CAO Y L, et al. Analysis and Evaluation of Two Assessment Techniques for ICT Scanner Spatial Resolution Measurement[J]. CT Theory and Applications, 2015, 24(3): 393-399.
|
|
WANG J, WU J J, KANG X, et al. Industrial Computed Tomography Spatial Tesolution and Density Resolution Test Methods Research[J]. Nuclear Electronics and Detection Technology, 2015, 35(8): 788-791.
|
|
LIU Q H, LI J, SHAN L J, et al. High-energy CT System with 10 lp/mm Spatial Resolution[J]. High Power Laser and Particle Beams, 2022, 34(12): 96-97.
|
|
HUANG J F, CHEN X Z, WANG H. Research on the Detection Mehod of Key Parameters of Oral and Maxillofacial CBCT[J]. Acta Metrologica Sinica, 2021, 42(03): 375-379.
|
|
PI L, SHI Y S, GAO S T, et al. Calibration of X Ray Coordinate Measuring Machine Based on Ball Plate Standard[J]. Acta Metrologica Sinica, 2017, 38(6A): 104-107.
|
|
CHEN S W, SHI Y S, ZHANG X Y, et al. A Method of Calibrating Spatial Resolution of Industrial CT[J]. Nanotechnology and Precision Engineering, 2017, 15(6): 494-498.
|
[10] |
EKIELSKI M, JUCHNIEWICZ M, PLUSKA M, et al. Nanometer Scale Patterning of GaN Using Nanoimprint Lithography and Inductively Coupled Plasma Etching[J]. Microelectronic Engineering, 2015, 133(5): 129-133.
|
|
XIA C X, SHENG J, YANG J, et al. Study of Deep Reactive Ion Etching (DRIE) of Silicon Structures with Large Thickness[J]. Navigation Positioning and Timing, 2015, 2(3): 96-101.
|
|
LIU F F, ZHANG M G, XU G B, et al. Study of Vertical Degree of ICP Silion Deep Etching Groove Wall[J]. Micronanoelectronic Technology, 2015, 52(3): 185-190.
|
|
LI Q, PAN R X, ZANG R, et al. Onthe Application of 3D Printed Medical Materials in Tissue Repair and Therapy[J]. Industrial Microbiology, 2023, 53(3): 4-6.
|
[16] |
戴京, 许忠斌, 李铁风. 3D微纳米打印技术与应用研究进展[J]. 塑料工业, 2016, 44(5): 1-5.
|
|
ZHANG X M, HAN W, WANG H W, et al. Research on the Design of Multifunctional Detection Phantom and 3D Printing Production[J]. Radiol Practice, 2023, 38(9): 1189-1194.
|
|
|
|