|
|
Study on the Relationship Between Sampling Flow Rate and Cut Size of Different Types of Particulate Matter Cutters |
TIAN Ying,ZHANG Guo-cheng,LIU Jia-qi,SHEN Shang-yi,WU Dan,PAN Yi-ting,JING Wen-jie |
National Quality Supervision and Inspection Center for Ecological & Environmental Products,Beijing Institute of Metrology, Beijing 100029, China |
|
|
Abstract The method of static box was used to explore the influence of sampling flow (Q) on the cut size D50 of particulate matter cutter,including a variety of cyclone cutters of BGI and an impaction-type cutter of Chinese brand.The results showed that no matter which type cyclone cutter,the changes of sampling flow resulted in translation of collection efficiency curve.And the greater the flow rate,the smaller D50.In addition, it was found that the PM1.0,PM2.5 and PM4.0 modes could be switched by changing the flow rate in the same whirlwind cutter,and the sampling flow rate was approximately inversely proportional to D50.For the impaction-type cutter,the square root of D50 was approximately inversely proportional to the sampling flow.It could be used as a rapid evaluation method to quickly estimate the corresponding D50 according to the actual flow rate,which has certain application value.
|
Received: 21 August 2022
Published: 21 September 2023
|
|
|
|
|
[1] |
Zwozdziak A, Sówka I, Willak-Janc E, et al. Influence of PM1 and PM2.5 on lung function parameters in healthy schoolchildren-a panel study [J]. Environmental Science and Pollution Research, 2016, 23 (23): 23892-23901.
|
|
Zhen Q, Fang Z G, Wang Y Q, et al. Bacterial characteristics in atmospheric haze and potential impacts on human health[J]. Acta Ecologica Sinica, 2019, 39 (6): 2244-2254.
|
[4] |
盛涛, 潘骏, 段玉森, 等. 上海市典型交通环境空气污染特征[J]. 中国环境科学, 2019, 39(8): 3193-3200.
|
|
Liu J Y, Gao J, Zhang Y C, et al. Results comparison of different source apportionment methods during APEC summit in Beijing[J]. China Environmental Science, 2020, 40 (3): 938-947.
|
[6] |
HJ 93—2013. 环境空气颗粒物 (PM10和PM2. 5) 采样器技术要求及检测方法 [S].
|
[8] |
Iozia D L, Leith D. Effect of cyclone dimensions on gas flow pattern and collection efficiency [J]. Aerosol Science and Technology, 1989, 10 (3): 491-500.
|
[10] |
阮兵, 李兴华, 谢岩, 等. PM1切割器性能测试系统的搭建与应用 [J]. 环境科学学报, 2018, 38 (5): 1797-1803.
|
[11] |
阮兵, 李兴华, 谢岩, 等. PM (2. 5) 旋风切割器的性能测试与模拟 [J]. 环境科学学报, 2018, 38 (7): 2811-2817.
|
|
Liu J Q, Zhang G C, Wu D, et al. Study on evaluation method of physical efficiency of cyclone microbiological sampler [J]. Acta Metrologica Sinica, 2022, 43 (10): 137-140.
|
[13] |
刘佳琪, 张国城, 吴丹, 等. PM1切割器的评价及其与PM (2. 5) 切割器的切换研究 [J]. 环境科学学报, 2021. 41 (12): 5093-5097.
|
[14] |
刘佳琪, 张国城, 吴丹, 等. 2021. PM10切割器捕集效率评价装置及方法研究[J]. 环境科学学报, 41: 2340-2346.
|
[15] |
刘佳琪, 张国城, 吴丹, 等. 不同种类颗粒物对切割器性能评价的影响研究[J]. 中国测试, 2022, 48 (1): 27-31.
|
[17] |
田莹, 张国城, 吴丹, 等, 生物气溶胶监测仪的校准方法比较 [J]. 计量学报, 2022, 43 (1): 140-144.
|
[18] |
刘佳琪, 张国城, 田莹, 等. 内标法对PM2. 5切割器快速评价方法的修正[J]. 计量学报, 2023,44 (4): 653-656.
|
|
Sheng T, Pan J, Duan Y S, et al. Study on characteristics of typical traffic environment air pollution in shanghai[J]. 2019, China Environmental Science, 2019,39(8): 3193-3200.
|
|
Ruan B, Li X H, Xie Y, et al. Performance testing and modeling of PM2. 5 cyclones[J]. Acta Scientiae Circumstantiae, 2018, 38 (7): 2811-2817.
|
|
Liu J Q, Zhang G C, Wu D, et al. Research on the influence of different kinds of particulate matter on the performance evaluation results of cutter[J]. China Measurement & Test, 2022, 48 (1): 27-31.
|
[16] |
田莹, 张国城, 潘一廷, 等. 荧光法生物气溶胶监测仪性能评价方法研究 [J]. 计量学报, 2023, 44 (3): 356-360.
|
[19] |
Gussman R A, Kenny L C, Labickas M, et al. Design, calibration, and field test of a cyclone for PM 1 ambient air sampling [J]. Aerosol Science & Technology, 2002, 36 (3): 361-365.
|
[21] |
Yoshida H, Kuwana A, Shibata H, et al. Comparison of aerodynamic particle size distribution between a next generation impactor and a cascade impactor at a range of flow rates[J]. AAPS PharmSciTech, 2017, 18(3): 646-653.
|
[22] |
Kenny L C, Gussman R A. A direct approach to the design of cyclones for aerosol-monitoring applications [J]. Journal of Aerosol Science, 2000, 31: 1407-1420.
|
[2] |
甄泉, 方治国, 王雅晴, 等. 雾霾空气中细菌特征及对健康的潜在影响[J]. 生态学报, 2019, 39 (6): 2244-2254.
|
[3] |
Filep , Fodor G H, Kun-Szab F, et al. Exposure to urban PM1 in rats: development of bronchial inflammation and airway hyperresponsiveness [J]. Respiratory Research, 2016, 17 (1): 1-11.
|
[9] |
Iozia D L, Leith D. The logistic function and cyclone fractional efficiency [J]. Aerosol Science and Technology, 1990, 12 (3): 598-606.
|
|
Ruan B, Li X H, Xie Y, et al. Design and application of performance evaluation system for PM1 sizeselectors [J]. Acta Scientiae Circumstantiae, 2018, 38 (5): 1797-1803.
|
|
Liu J Q, Zhang G C, Wu D, et al. Research on the efficiency evaluation device and method of PM10 cutter[J]. Acta Scientiae Circumstantiae, 2021, 41: 2340-2346.
|
|
Liu J Q, Zhang G C, Tian Y, et al. Modification of rapid evaluation method for PM2. 5 cutter by internal calibration method [J]. Acta Metrologica Sinica, 2023, 44 (4): 653-656.
|
[20] |
Moore M E, McFarland A R. Performance modeling of single-inlet aerosol sampling cyclones [J]. Environmental Science & Technology, 1993, 27 (9): 1842-1848.
|
[7] |
Barth W. Design and layout of the cyclone separator on the basis of new investigations [J]. Brennstoff Warme Kraft, 1956, 8 (1): 1-9.
|
|
Liu J Q, Zhang G C, Wu D, et al. Evaluation of PM1 cutters and switching between PM2. 5 cutters[J]. Acta Scientiae Circumstantiae, 2021, 41 (12): 5093-5097.
|
|
Tian Y, Zhang G C, Wu D, et al. Comparison of biological calibration methods of bioaerosol monitor [J]. Acta Metrologica Sinica, 2022, 43 (1): 140-144.
|
[5] |
刘佳媛, 高健, 张岳翀, 等. 北京APEC期间不同颗粒物源解析方法的结果比较[J]. 中国环境科学, 2020, 40 (3): 938-947.
|
[12] |
刘佳琪, 张国城, 吴丹, 等. 气旋式生物气溶胶采样器采集物理效率评价方法研究 [J]. 计量学报, 2022, 43 (10): 137-140.
|
|
Tian Y, Zhang G C, Pan Y T, et al. Performance verification and application of bioaerosol monitor by fluorescence method[J]. Acta Metrologica Sinica, 2023,44 (3): 356-360.
|
[23] |
An I H, Lee C H, Lim J H, et al. Development of a miniature cyclone separator operating at low Reynolds numbers as a pre-separator for portable black carbon monitors [J]. Advanced Powder Technology, 2021, 32 (12): 4779-4787.
|
|
|
|