|
|
Analysis of Measurement Process Characteristics Based on Measurement Uncertainty |
WANG Yong1,LIANG Ji-chao2 |
1. Shandong Society for Measurement,Jinan,Shandong 250014,China
2. Shandong Institute of Metrology and Science, Jinan, Shandong 250014,China |
|
|
Abstract In order to reasonably evaluate the measurement process, the qualified probability and misjudgment risk caused by measurement uncertainty and their impact should be analyzed. The accurate values and calculation examples of qualified probability under different measurement capability indexes are given, which can provide reference for the compliance judgment of measurement process. The calculation results show that when the measurement results are near the upper and lower limits of conformance interval, the probability of misjudgment increases, and corrective action should be taken to reduce the risk to meet the measurement requirements.
|
Received: 21 May 2021
Published: 19 September 2022
|
|
|
|
|
[1]陈怀艳, 曹芸. 测量不确定度对合格判定的影响及误判概率的计算[J]. 中国计量, 2019(6): 85-90.
[2]王宏涛, 王汉斌, 陈晓怀,等. 测量不确定度引起的批量产品检验误判风险评估[J]. 计量学报, 2017, 38(5): 559-562.
Wang H T, Wang H B, Chen X H, et al. Evaluation of Misjudgment Risks Caused by Measurement Uncertainty for Batch Product Inspection [J]. Acta Metrologica Sinica, 2017, 38(5): 559-562.
[3]蔡常青, 王健, 陈杭杭,等. 非自动衡器测量不确定度评估及其在符合性判定中的应用[J]. 计量学报, 2021, 42(1): 59-65.
Cai C Q, Wang J, Chen H H, et al. Measurement Uncertainty Evaluation of Non-Automatic Weihing Instrument and its Application in Conformity Assessment[J]. Acta Metrologica Sinica, 2021, 42(1): 59-65.
[4]陈晓怀, 王汉斌, 程银宝,等. 基于测量不确定度的产品检验中误判率计算[J]. 中国机械工程, 2015, 26(14): 1847-1856.
Chen X H, Wang H B, Cheng Y B, et al. Calculation of Misjudgment Probability in Product Tests Based on Measurement Uncertainty[J]. China Mechanical Engineering, 2015, 26(14): 1847-1856.
[5]陈凌峰. 抽样引起的测量不确定度评定 [J]. 计量学报, 2020, 41(7): 892-896.
Chen L F. Evaluating the Sampling Contribution to the Measurement Uncertainty [J]. Acta Metrologica Sinica, 2020, 41(7): 892-896.
[6]俱岩飞,王俊彪,常崇义,等. 考虑非正定相关性的测量不确定度蒙特卡洛评定方法[J]. 计量学报, 2022, 43(6): 830-836.
Ju Y F, Wang J B, Chang C Y, et al. Monte Carlo Method for the Measurement Uncertainty Evaluation Considering Non-positive Definite Correlation[J]. Acta Metrologica Sinica, 2022, 43(6): 830-836.
[7]GB/T 19022—2003 测量管理体系 测量过程和测量设备要求[S]. 2003.
[8]运金芬. 数控磨齿机在线测量系统测量过程控制技术研究 [J]. 工业计量, 2020, 30(6): 9-11.
[9]李芳红, 谢亚萍,夏建华,等. 测量管理体系实施中计量要求导出方法的探索与应用[J]. 中国计量, 2016(5): 31-33.
[10]江义仙,候立红. 测量过程的计量要求导出、验证和不确定度的评定[J]. 工业计量, 2016, 26(1): 55-57.
[11]孙英奇. 试论计量确认过程的计量要求导出 [J]. 中国计量, 2011(3): 41-42.
[12]GUIDE 98-4: Uncertainty of measurement—Part 4: Role of measurement uncertainty in conformity assessment[S]. 2012.
[13]JJF 1059.1—2012测量不确定度评定与表示[S]. |
|
|
|