|
|
Calculation and Measurement for Acoustic Characteristics of Baffle Sample under High Hydrostatic Pressure |
LI Shui,LUO Ma-qi,YI Yan |
Hangzhou Applied Acoustic Research Institute, Hangzhou, Zhejiang 311400, China |
|
|
Abstract In order to develop a pressured, low-frequency and wide-band acoustic barrier which can shield the noise and improve the spatial gain of acoustic array in underwater sonar system, the acoustic tube sample was designed. According to the sound propagation theory in layered medium, the sound pressure reflection coefficient and transmission coefficient under the backing of air and water were calculated by using the transfer matrix method of multilayer uniform structure, and there were obvious different acoustic properties. A measured sample with a diameter of 206mm was made. The acoustic performance of the acoustic baffle sample in the frequency range of 100Hz~4kHz and the hydrostatic pressure range from normal pressure to 2MPa was tested by using the standing wave tube and traveling wave tube measurement system in Hangzhou Research Institute of Applied Acoustics. The measured results are basically agreed with the theoretical calculation value. The acoustic baffle sample has certain low-frequency and wide-band echo characteristics under hydrostatic pressure.
|
Received: 26 January 2021
Published: 18 May 2022
|
|
|
|
|
[1]王海清, 赵双, 唐义政. 反声障板对球形换能器指向性的影响 [J]. 声学与电子工程, 2012 (2): 25-44.
Wang H Q, Zhao S, Tang Y Z. Effect of sound reflected baffle on directivity of spherical transducer [J]. Acoustics and Electronics Engineering, 2012(2): 25-44.
[2]Ji Jian-fei, Liang Guo-long, Wang Yan, et al. Influences of prolate spheroidal baffle of sound diffraction on spatial directivity of acoustic vector sensor [J]. Science China Technological Sciences, 2010, 53(10): 2846-2852.
[3]梁国龙, 庞福滨, 张光普. 障板条件下矢量传感器高精度测向研究 [J]. 哈尔滨工程大学学报, 2013, 34(12): 1502-1508.
Liang G L, Pang F B, Zhang G P. Research on high-precision DOA estimation of a vector sensor under baffle conditions [J]. Journal of Harbin Engineering University, 2013, 34(12): 1502-1508.
[4]王敏慧, 胡健辉, 王艳. 声障板对圆柱换能器轴向波束抑制技术研究 [J]. 声学技术, 2019, 38(4): 476-479.
Wang M H, Hu J H, Wang Y. Research on axial beam suppression technique for baffled cylindrical transducer [J]. Technical Acoustics, 2019, 38(4): 476-479.
[5]唐海清, 缪荣兴. 接收阵声障板的性能评价和理论计算 [J]. 声学与电子工程, 2001, (1): 28-34.
Tang H Q, Miao R X. Performance evaluation and theoretical calculation of acoustic baffle of receiving array [J]. Acoustics and Electronic Engineering, 2001, (1): 28-34.
[6]郝浩奇. 影响反声障板增益的因素 [J]. 应用声学, 2011, 30 (3): 187-192.
Hao H Q. Gain influences for a reflection baffle [J]. Applied Acoustics, 2011, 30(3): 187-192.
[7]尹义龙, 李俊宝, 夏金东, 等. 有限非均匀空腔障板对换能器指向性的影响 [J]. 应用声学, 2011, 30(2): 124-130.
Yin Y L, Li J B, Xia J D, et al. Influences of finite-sized non uniform air-backed baffle on transducer directivity [J]. Applied Acoustics, 2011, 30 (2): 124-130.
[8]杨德森, 朱中锐, 时胜国, 等. 弹性矩形空气腔障板水下声散射近场矢量特性 [J]. 哈尔滨工程大学学报, 2013, 34 (9): 1077-1083.
Yang D S, Zhu Z R, Shi S G, et al. Acoustic vector characteristics of near fields scattered by an elastic rectangular baffle [J]. Journal of Harbin Engineering University, 2013, 34(9): 1077-1083.
[9]仲东南, 石晓, 乔冬平, 等. 水声耐压反声材料的研制 [J]. 热固性树脂, 2004, 19 (1): 20-22.
Zhong D N, Shi X, Qiao D P, et al. development of underwater acoustic pressure-resistant and sound reflected materials [J]. Thermosetting Resin, 2004, 19 (1): 20-22.
[10]朱晓君, 郭万涛. 发泡橡胶反声障板的研制 [J]. 材料开发与应用, 2005, 增刊: 118-119.
Zhu X J, Guo W T. Development of Foamed Rubber Baffle [J]. Materials development and application, 2005, supplement: 118-119.
[11]张德志, 周利生, 翁志学, 等. 圆柱形通道结构橡胶声障板 [J]. 应用声学, 2004, 23(2): 45-48.
Zhang D Z, Zhou L S, Weng Z X, et al. Acoustic performance of rubber baffle with cylindrical duct [J]. Applied Acoustics, 2004, 23(2): 45-48.
[12]边汉林, 夏铁坚. 一种圆柱通道性橡胶反声障板的研究 [J]. 声学与电子工程, 2014, (1): 31-33.
Bian H L, Xia T J. Study on a sound reflected rubber baffle with cylindrical channels [J]. Acoustics and Electronic Engineering, 2014, (1): 31-33.
[13]杨洁, 张德志, 张振, 等. 水声宽频复合结构声障板技术研究 [J]. 声学与电子工程, 2019, (3): 28-30.
Yang J, Zhang D Z, Zhang Z, et al. Research on underwater broadband composite structure acoustic barrier technology [J]. Acoustics and Electronic Engineering, 2019, (3): 28-30.
[14]贾梦雯, 赵鹏, 王月兵. 高静水压下换能器阻抗特性的测量方法研究 [J]. 计量学报, 2020, 41(4): 461-468.
Jia M W, Zhao P, Wang Y B. Research on measurement method of electrical impedance of transducer under high hydrostatic pressure [J]. Acta Metrologica Sinica, 2020, 41(4): 461-468.
[15]李水, 易燕, 罗马奇, 等. 在高压消声水池中的水声材料性能测量 [J]. 声学技术, 2008, 27(4, Pt. 2): 222-225.
Li S, Yi Y, Ruo M Q, et al. Measurement of properties of underwater acoustic materials in a high-pressure anechoic tank [J]. Acoustic Technology, 2008, 27(4, Pt. 2): 222-225.
[16]Li Shui, Yi Yan, Zhang J. The parametric source method for measuring characteristics of underwater acoustic materials in a pressure vessel [J]. Chinese Journal of Acoustics, 2020, 39(1): 83-93.
[17]Pang Ye-zhen, Yu Xiao-li, Zhang X W, et al. Measuring the acoustic properties of underwater coating material under pressure-acoustic impedance method [J]. Journal of Ship Mechanics, 2017, 21(3): 372-381.
[18]Li Shui, Luo Maqi, Fan J L, et al. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials [J]. Chinese Journal of Acoustics, 2007, 26(4): 301-312.
[19]李水, 沈建新, 缪荣兴. 水声材料低频声性能的驻波管测量 [J]. 计量学报, 2003, 24(3): 221-224.
Li S, Shen J X, Miao R X. Measurement of low frequency acoustic properties of underwater acoustic materials by standing wave tube [J]. Acta Metrologica Sinica, 2003, 24(3): 221-224.
[20]何世平, 汤渭霖, 何琳. 水下吸声覆盖层声管测试的背衬研究 [J]. 应用声学, 2007, 26(2): 83-87.
He S P, Tang W L, He L. Effect of backing in the measurement of underwater anechoic coating with an acoustic cylindrical tube [J]. Applied Acoustics, 2007, 26(2): 83-87.
[21]张阿漫, 姚熊亮, 钱德进, 等. 背衬对隔声去耦瓦吸声性能的影响 [J]. 传感器与微系统, 2008, 27(2): 53-55.
Zhang A M, Yao X L, Qian D J, et al. Effect of backing on sound absorption behavior of isolating-sound and decoupled tile [J]. Transducer and Micro system Technologies, 2008, 27(2): 53-55.
[22]Brekhovskikh L. 分层介质中的波(2版)[M]. 杨训仁,译. 北京: 科学出版社, 1985, 14-16.
[23]朱勤丰, 郑慧峰, 王月兵, 等. 共振图像的多层介质声学特性分析[J]. 计量学报, 2020, 41(9): 1102-1108.
Zhu Q F, Zheng H F, Wang Y B, et al. Acoustic Characteristics Analysis of Multilayer Media Based on Magnetic Resonance Imaging[J]. Acta Metrologica Sinica, 2020, 41(9): 1102-1108. |
|
|
|