|
|
Direct Measurement Method of Planck Constant Based on Photon Energy Measurement |
LI Yu-fen,HE Sui-rong,WEI Lian-fu |
School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China |
|
|
Abstract Planck’s constant is the smallest acting quantum in physics. It is a mark to distinguish classical physics from quantum phenomena. Therefore, the accurate measurement of such a basic physical constant is very important, not only to understand the origin of the material world, the experimental observation of various quantum effects, but also for the establishment of the physical measurement benchmark of mass units. The precise measurements of Planck constant have demonstrated for more than 120 years, by various indirect and direct methods. Although its exact value was given in 2019, the accuracy of its measurement value is still not enough, specifically compared to that of the time and frequency measurements. As a new development of the indirect measurement of Plancks constant by the traditional photoelectric effect method, a direct measurement method of Plancks constant is proposed by using the photon-induced ionization of electrons on liquid helium. The saturated photocurrent platforms could be measured by using the photon number resolution detectors for the different intensity lasers. The feasibility of the method could be achieved by using the existing micro/nano technique to fabricate the devices, which will be measured in a low temperature weak signal detection system.
|
Received: 15 March 2022
Published: 08 April 2022
|
|
|
|
|
[1] Newell D B, Cabiati F, Fischer J, et al. The CODATA 2017 values of h, e, k, and N Afor the revision of the SI[J]. Metrologia , 2018, 55(1):L13-L16.
[2] National Institute of Standards and Technology. CODATA recommended values of the fundamental physical constants [EB]. https: //physics.nist.gov/cuu/pdf/wall_2018.pdf, 2020-09-28.
[3] 马爱文, 曲兴华. SI基本单位量子化重新定义及其意义[J]. 计量学报, 2020, 41(2):129-133.
Ma A W, Qu X H. The Quantized Redefinition of the SI and its Signification[J]. Acta Metrologica Sinica , 2020, 41(2):129-133.
[4] 李玉芬, 和穗荣, 韦联福. 普朗克常数精密测量的历史和现状[J]. 计量学报, 2021, 42(11):1534-1542.
Li Y F, He S R, Wei L F. Precise Measurements of Planck Constant: Histories and Present Situation[J]. Acta Metrologica Sinica , 2021, 42(11):1534-1542.
[5] 韩冰, 贺青, 李世松, 等. 普朗克常数h测定与质量量子基准的最新研究进展[J]. 计量学报, 2013, 34(1):90-96.
Han B, He Q, Li S S, et al. Measurement of Planck Constant h and the Development on Quantum Mass Standard[J]. Acta Metrologica Sinica ,2013,34(1):90-96.
[6] Bego V. Determination of the Volt by Means of Voltage Balances[J]. Metrologia , 1988, 25(3): 127-133.
[7] Li S, Han B, Li Z, et al. Precisely measuring the Planck constant by electromechanical balances[J]. Measurement , 2012, 45(1):1-13.
[8] Kibble B P. A measurement of the gyromagnetic ratio of the proton by the strong field method[C]//Atomic Masses and Fundamental Constants,New York,US,1976.
[9] Kibble B P, Robinson I A, Belliss J H, et al. A Realization of the SI Watt by the NPL Moving-coil Balance[J]. Metrologia , 1990, 27(4): 173-192.
[10] 李辰, 贺青, 张钟华, 等. 能量天平反馈系统的改进[J]. 仪器仪表学报, 2014, 35(5):987-993.
Li C, He Q, Zhang Z H, et al. Improvements in the feedback system of Joule balance[J]. Chinese Journal of Scientific Instrument , 2014, 35(5):987-993.
[11] 李正坤, 张钟华, 鲁云峰, 等. 能量天平及千克单位重新定义研究进展[J]. 物理学报, 2018, 67(16):160601.
Li Z K, Zhang Z H, Lu Y F, et al. Energy balance and redefinition of kilogram unit[J]. Acta Physica Sinica , 2018, 67(12):160601.
[12] 白洋, 王大伟, 李正坤, 等. 能量天平悬挂系统初始位姿识别方法[J]. 计量学报,2020,41(3):273-278.
Bai Y, Wang D W, Li Z K, et al. Recognition of Initial Position and Posture of Suspended Coil in Joule Balance. Acta Metrologica Sinica, 2020, 41(3):273-278.
[13] 任飞安, 许金鑫, 由强, 等. 能量天平永磁体系统的温度场分析[J]. 计量学报,2019,40(3):353-360.
Ren F A, Xu J X, You Q, et al. Thermal Analysis of Permanent-Magnet System in the Joule Balance[J]. Acta Metrologica Sinica , 2019, 40(3):353-360.
[14] Sullivan D B, Frederick N V. Can superconductivity contribute to the determination of the absolute ampere?[J]. IEEE Transactions on Magnetics , 2003, 13(1):396-399.
[15] Steiner, Richard. History and progress on accurate measurements of the Planck constant[J]. Reports on Progress in Physics Physical Society , 2013, 76(1):016101.
[16] Wood B M, Sanchez C A, Green R G, et al. A summary of the Planck constant determinations using the NRC Kibble balance[J]. Metrologia , 2017, 54(3):399-409.
[17] 张钟华, 贺青, 李正坤, 等. 量子化霍尔电阻国家标准的研究[J]. 计量学报, 2005, 26(2):97-101.
Zhang Z H, He Q, Li Z K, et al. A Study on the National Standard of Quantum Hall Resistance[J]. Acta Metrologica Sinica , 2005, 26(2):97-101.
[18] Mohr P J, Newell D B, Taylor B N, et al. Data and analysis for the CODATA 2017 special fundamental constants adjustment[J]. Metrologia , 2018, 55(1):125-146.
[19] National Institute of Standards and Technology. Adding Up Photons with a TES[EB]. https: //www.nist.gov/news-events/news/2011/11/adding-photons-tes.2020-09-28.
[20] Guo W, liu X, Wang Y, et al. Counting near infrared photons with microwave kinetic inductance detectors. [J]. Applied Physics Letters , 2017, 110(21):1-5.
[21] 李华, 许春青. 关于光电效应中饱和电流的讨论[C]//2013年全国高等学校物理基础课程教育学术研讨会. 太原, 2013.
[22] DuBridge Lee A. Theory of the Energy Distribution of Photoelectrons[J]. Physical Review , 1933, 43(9):727-741.
[23] 郭伟杰. 基于弱信号检测的单光子探测及操纵研究[D]. 成都:西南交通大学, 2016.
[24] Dykman M I, Platzman P M, Seddighrad P. Qubits with electrons on liquid helium[J]. Physical review B Condensed matter , 2002, 67(15):286-293.
[25] Lyon S A. Spin-based quantum computing using electrons on liquid helium[J]. Physical Review A , 2006, 74:052338.
[26] Fragner A A. Circuit Quantum Electrodynamics with Electrons on Helium[J]. Dissertations & Theses-Gradworks , 2013, 97(2):023508.
[27] He S R, Wei F. Phoionizations of electrons floating on liquid Helium[J]. Optik , 2019, 181:36-43. |
|
|
|