|
|
Research on a Time-frequency Measurement Algorithm for Underwater Acoustic Velocity |
BAO Jing-jing1,JIANG Zhi-di2,LIU Wei-yue1 |
1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315201, China
2. College of Science & Technology, Ningbo University, Ningbo, Zhejiang 315300, China |
|
|
Abstract It's difficult to detect the starting point of signal during measuring time-of-flight of sound propagation, caused by which measurement error should be eliminate. A comprehensive measurement algorithm based on time-frequency analysis is proposed to obtain high-precision ultrasonic velocity. Firstly, cross-correlation method within time domain is used to measure the whole cycle time of sound wave traveled; then, phase difference in the signal frequency domain is used to obtain the ultrasonic propagation group delay information; finally, the high-precision time-of-flight measurement is obtained by combining time and frequency domain information, so as to improve the measurement accuracy of sound velocity. By building the sound velocity measurement platform employed “FPGA + microprocessor” architecture, results show that the algorithm is effective and instructive to practice.
|
Received: 14 September 2020
Published: 23 March 2022
|
|
Fund:Ningbo Natural Science Foundation |
|
|
|
[1]Matthieu H, Djamel N, Jean L D. Measurement of Speed of Sound, Density Compressibility and Viscosity in Liquid Methyl Laurate and Ethyl Laurate up to 200 Mpa by Using Acoustic Wave Sensors[J]. Journal of Chemical Thermodynamics, 2018(120): 1-12.
[2]赵永科, 李跃忠, 胡开明. 超声波流量计信号驱动与高速切换电路研究[J]. 东华理工大学学报(自然科学版), 2011(2): 198-200.
Zhao Y K, Li Y Z, Hu K M. Ultrasonic Flowmeter with Signal Driven and High-speed Switching Circuit Research[J]. Journal of East China Institute of Technology, 2011(2): 198-200.
[3]陈洁, 余诗诗, 李斌, 等. 基于双阈值比较法超声波流量计信号处理[J]. 电子测量与仪器学报, 2013, 27(11) : 1024-1033.
Chen J, Yu S S, Li B, et al. Signal Processing Based on Dual-Threshold of Ultrasonic Flow Meter[J]. Journal of Electronic Measurement and Instrumentation, 2013, 27(11) : 1024-1033.
[4]水永辉, 刘艳萍, 赵连环, 等. 基于TMS320F28335的超声多普勒流量计[J]. 仪表技术与传感器, 2012(7): 24-25.
Shui Y H, Liu Y P, Zhao L H, et al. Ultrasonic Doppler Flowmeter Based on TMS320F28335[J]. Instrument Technique and Sensor, 2012(7): 24-25.
[5]王磊阳, 陈建峰, 刘明祥, 等. 一种高精度时差法超声波水表的设计与实现[J]. 传感技术学报, 2019, 32(8): 1175-1181.
Wang L Y, Chen J F, Liu M X, et al. Design and Implementation of a High Precision Ultrasonic Water Meter Based on Time Difference Method[J]. Chinese Journal of Sensors and Actuators, 2019, 32(8): 1175-1181.
[6]梁志国, 王雅婷, 吴娅辉. 基于四参数正弦拟合的放大器延迟时间的精确测量[J]. 计量学报, 2019, 40(6): 1101-1106.
Liang Z G, Wang Y T, Wu Y H. The Precise Measurement Method for Delay of Amplifiers Based on Four-parameter Sinusoidal Curve-fit Method[J]. Acta Metrologica Sinica, 2019, 40(6): 1101-1106.
[7]孙鸿雁, 赵凯. 温微波辐射计检测的温度补偿技术[J]. 北京邮电大学学报, 2008, 31(2): 5-9.
Sun H Y, Zhao K, Temperature Compensative Technique in Microwave Radiometer Detection System[J]. Journal of Beijing University of Posts and Telecommunications, 2008, 31(2): 5-9.
[8]魏东, 石友安, 胡斌, 等. 电磁超声法测量结构内部温度场的试验研究[J]. 机械工程学报, 2019, 55(6): 93-99.
Wei D, Shi Y A, Hu B, et al. Experimental Study on Sensing the Internal Temperature Distributions of Structures by Electromagnetic Ultrasonic[J]. Journal of Mechanical Engineering, 2019, 55(6): 93-99.
[9]Dominik W, Bruno S, Christian O P, et al. An Acoustic Time-of-Flight Approach for Unsteady Temperature Measurements: Characterization of Entropy Waves in a Model Gas Turbine Combustor[J]. J Eng Gas Turbines Power, 2017, 139(4): 041501. 1-041501. 8.
[10]张凯, 武多多, 刘强, 等. 高密度流体声速测量中脉冲回波传播时间的测定[J]. 化工进展, 2020, 39(4): 1219-1226.
Zhang K, Wu D D, Liu Q, et al. Determination of Time of Flight of Pulse-echo Burst for Sound Speed Measurement in High Density Fluids[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1219-1226.
[11]伍肆, 冯晓娟, 林鸿, 等. 差分飞行时间法精密测量高压液体声速的研究[J]. 计量学报, 2015, 36(4): 337-343.
Wu S, Feng X J, Lin H, et al. Experimental System for the Speed of Sound in Liquids at High Pressure Using the Differential Time-of-flight Method[J]. Acta Metrologica Sinica, 2015, 36(4): 337-343.
[12]李勇. 基于温度自适应的超声波渡越时间测量方法研究[J]. 自动化与仪表, 2019, 34(1): 61-64, 88.
Li Y. Study on Ultrasonic Transit-time Measurement Method Based on Temperature Adaptive[J]. Automation & Instrumentation, 2019, 34(1): 61-64, 88.
[13]芦颖. 基于FPGA 的高精度测时平台设计[D]. 哈尔滨:哈尔滨工程大学, 2013.
[14]赵平伟, 郭东敏, 郑晨皓. 基于数据选择的引信测试回波信号高精度延时[J]. 探测与控制学报, 2018, 40(4): 68-72.
Zhao P W, Guo D M, Zheng C H. Fuze Testing Echo High Precision Delay Based on Data Selection[J]. Journal of Detection & Control, 2018, 40(4): 68-72.
[15]燕学智, 王海云, 王昕. 超声波飞行时间测量的数字增益补偿[J]. 仪器仪表学报, 2018, 39(9): 82-90.
Yan X Z, Wang H Y, W X. Digital Gain Compensation for Ultrasonic Flight Time Measurements[J]. Chinese Journal of Scientific Instrument, 2018, 39(9): 82-90.
[16]姜燕丹, 王保良, 黄志尧, 等. 基于模型的超声波渡越时间测量方法研究[J]. 工程热物理学报, 2015, 36(7): 1501-1504.
Jiang Y D, Wang B L, Huang Z Y, et al. Research on Model-based Ultrasonic Time-of-Flight Measurement[J]. Journal of Engineering Themophysics, 2015, 36(7): 1501-1504.
[17]李亚飞, 陈智军, 朱卫俊, 等. 基于频域相位信息的声表面波谐振器回波频率估计[J]. 计量学报, 2020, 41(7): 848-851.
Li Y F, Chen Z J, Zhu W J, et al. Echo Frequency Estimation of Surface Acoustic Wave Resonator Based on Phase Information in Frequency Domain[J]. Acta Metrologica Sinica, 2020, 41(7): 848-851.
[18]Chong S Y , Lee J R, Park C Y. Statistical Threshold Determination Method Through Noise Map Generation for Two-Dimensional Amplitude and Time-of-Flight Mapping of Guided Waves[J]. Journal of Sound and Vibration, 2013(332): 1252-1264.
[19]陈建, 孙晓颖, 林琳, 等. 基于单周期互相关滤波的超声波TOF检测方法[J]. 仪器仪表学报, 2014, 35(3): 664-669.
Chen J, Sun X Y, Lin L, et al. Accurate Ultrasonic TOF Measurement Method Based on Monocycle Cross-Correlation Filtering[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 664-669. |
|
|
|