|
|
Research on Stochastic Resonance Phenomenon of Fractional Bistable System and FPGA Implementation |
ZHU Zuo,ZHENG Yong-jun,LUO Zai |
College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China |
|
|
Abstract The fractional order is more concise and accurate for the description of complex systems with memory dependence and spatial correlation, compared with the integer order calculus. It is observed that the damping has power-law attenuation characteristics, so a reasonable autocorrelation damping kernel function is selected. Combining the theory of fractional calculus and Langevin equation, the fractional Langevin equation can be derived. Then, a FPGA implementation method of fractional bistable stochastic resonance system is proposed based on this theory. Finally, a simulation experiment is performed to verify whether the system can generate stochastic resonance by changing the order of the fractional order. The results show that the system can generate stochastic with an appropriate fractional order, which can effectively extract the weak signal submerged by noise. And there is an optimal fractional order that maximizes the useful signal output gain.
|
Received: 07 September 2020
Published: 23 March 2022
|
|
|
|
|
[1]陆思良. 基于随机共振的微弱信号检测模型及应用研究 [D]. 合肥:中国科学技术大学, 2015.
[2]张金凤, 李继猛, 杨莹, 等.基于改进耦合增强随机共振的滚动轴承故障诊断 [J].计量学报, 2019, 40 (3): 385-391.
Zhang J F, Li J M, Yang Y, et al. Rolling Bearing Fault Diagnosis Based on Improved Coupling-enhanced Stoch-astic Resonance [J]. Acta Metrologica Sinica, 2019, 40 (3): 385-391.
[3]陈剑, 陶善勇, 王维, 等. 基于周期势函数的自适应二阶欠阻尼随机共振信号增强方法 [J]. 计量学报, 2019, 40 (4): 681-685.
Chen J, Tao S Y, Wang W, et al. Adaptive second-order underdamped stochastic resonance signal enhancement method based on periodic potential function [J]. Acta Metrologica Sinica, 2019, 40 (4): 681-685.
[4]时培明,袁丹真,张文跃, 等. 基于时延反馈多稳随机共振的微弱信号检测方法[J]. 计量学报, 2020, 41 (7): 868-872.
Shi P M, Yuan D Z, Zhang W Y, et al. Weak Signal Detection Method Based on Delay Feedback Multistable Stochastic Resonance[J]. Acta Metrologica Sinica, 2020, 41 (7): 868-872.
[4]翟玉卫, 郑世棋, 刘岩, 等. 热反射测温中基于随机共振的微小信号测量 [J]. 计量学报, 2019, 40 (4): 618-624.
Zhai Y W, Zheng S Q, Liu Y, et al. Measurement of tiny signals based on stochastic resonance in thermal ref-lection temperature measurement [J]. Acta Metrologica Sinica, 2019, 40 (4): 618-624.
[5]Gammaitoni L, HNggi P, Jung P, et al. Stochastic resonance [J]. Reviews of Modern Physics, 1998, 70 (1): 223-287.
[6]Yu T, Zhang L, Luo M K. Stochastic resonance in the fractional Langevin equation driven by multiplicative noise and periodically modulated noise [J]. Physica Scripta, 2013, 88 (4): 045008.1-045008.6.
[7]Pisarchik A N, Jaimes-Reátegui, R, Magallón-García C A, et al. Critical slowing down and noise-induced in-termittency in bistable perception: bifurcation analysis [J]. Biological Cybernetics, 2014, 108 (4): 397-404.
[8]李继猛, 张云刚, 张金凤, 等. 基于自适应随机共振的齿轮微弱冲击故障信号增强提取方法研究 [J]. 计量学报, 2017, 38 (5): 602-606.
Li J M, Zhang Y G, Zhang J F, et al. Research on enhanced extraction method of weak shock fault signal based on adaptive stochastic resonance [J]. Acta Metrologica Sinica, 2017, 38 (5): 602-606.
[9]Soika E, Mankin R, Ainsaar A. Resonant Behavior of a fractional oscillator with fluctuating frequency [J]. Phy-sical Review E, 2010, 81 (1): 011141.1-011141.11.
[10]王飞. 分数阶双稳系统的随机共振现象及其应用研究[D]. 杭州:中国计量学院, 2016.
[11]钟苏川, 高仕龙, 韦鹍, 等.线性过阻尼分数阶Langevin方程的共振行为 [J]. 物理学报, 2012, 61 (17): 46-54.
Zhong S C, Gao S L, Wei K, et al. Resonance behavior of linear over-damped fractional-order Langevin equation [J]. Acta Physica Sinica, 2012, 61 (17): 46-54.
[12]Muresan C I , Folea S , Mois G , et al. Development and implementation of an FPGA based fractional order controller for a DC motor [J]. Mechatronics, 2013, 23 (7): 798-804.
[13]Jiang C X, Adams J L, Carletta J E, et al. Hardware implementation of fractional-order systems as infinite im-pulse response filters [J]. IFAC Proceedings Volumes, 2006, 39 (11): 408-413.
[14]Podlubny I. Fractional differential equations: an intro-duction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications [M]. San Diego: Mathematics in Science and En-gineering, 1998, 198: 1-340.
[15]张刚, 胡韬, 张天骐. 基于随机共振大参数微弱周期信号检测 [J]. 科学技术与工程, 2015, 15 (35): 189-192.
Zhang G, Hu T, Zhang T Q. Detection of weak periodic signals based on large parameters of stochastic resonance [J]. Science Technology and Engineering, 2015, 15 (35): 189-192.
[16]汪洋百慧,郑永军,罗哉. Atangana-Baleanu分数阶双稳系统的随机共振现象[J]. 计量学报, 2021, 42 (10): 1372-1379.
Wang Y B, Zheng Y J, Luo Z. Stochastic Resonance Phenomenon of Atangana-Baleanu Fractional Bistable System [J]. Acta Metrologica Sinica, 2021, 42 (10): 1372-1379.
[17]蔚涛, 罗懋康, 华云.分数阶质量涨落谐振子的共振行为[J]. 物理学报, 2013, 62 (21): 51-59.
Wei T, Luo M K, Hua Y. Resonance behavior of frac-tionalorder mass fluctuation harmonic oscillator [J]. Acta Physica Sinica, 2013, 62 (21): 51-59.
[18]高仕龙, 钟苏川, 韦鹍, 等.过阻尼分数阶Langevin方程及其随机共振[J]. 物理学报, 2012, 61 (10): 32-37.
Gao S L, Zhong S C, Wei K, et al. Overdamped fractional order Langevin equation and its stochastic resonance [J]. Acta Physica Sinica, 2012, 61 (10): 32-37.
[19]郑永军. 分数阶随机共振机理及控制策略和应用研究[D]. 杭州:浙江大学, 2017. |
|
|
|