|
|
Research on Thickness Measurement Method of Nuclear Heat Exchanger Plate Based on Line Laser Scanning |
LIU Jie1,ZHENG Xue-song2,YANG Bin3,WANG Gang2,LI Wen-long1,2 |
1. College of General Education, Wuhan Business University, Wuhan, Hubei 430056, China
2. School of Mechanical and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
3. China Nuclear Power Operation Technology Co. Ltd, Wuhan, Hubei 430223, China |
|
|
Abstract In order to realize the on-site rapid detection of the thickness and size of the nuclear power heat exchange plate, a line laser three-dimensional measurement system is builded for the thickness detection of complex thin-walled parts. According to the digital model and the constantly changeable surface curvature of the heat exchange plate, the thickness calculation method based on the distance between points and the spatial clustering is proposed to realize the efficient calculation of its thickness. The experimental result shows that the measurement accuracy of the system is better than 0.15mm, the inspection time is less than 2min, and the calculated average thickness of the heat exchange plate is 0.9921mm, which can meet the enterprises on-site (measurement accuracy is better than 0.2mm, inspection time ≤5min) inspection requirements.
|
Received: 01 September 2021
Published: 28 December 2022
|
|
|
|
|
[1]胡彬, 田洪建. 核电厂最终热阱冷冻水系统研究[J]. 核科学与工程, 2010, 30(S1): 241-247.
Hu B, Tian H J. Study on the final heat trap chilled water system in nuclear power plant[J]. Nuclear Science and Engineering, 2010, 30(S1): 241-247.
[2]刘志平, 王莉, 张伟. ASTM SMO254板式换热器腐蚀的原因[J]. 腐蚀与防护, 2016, 37(11): 932-935.
Liu Z P, Wang L, Zhang W. Causes of corrosion of ASTM SMO254 plate heat exchanger[J]. Corrosion and Protection, 2016, 37(11): 932-935.
[3]于沛, 付浩然. 华龙一号设备冷却水系统板式换热器性能研究[J]. 核动力工程, 2018, 39(S1): 115-118.
Yu P, Fu H R. Study on the performance of plate heat exchanger in cooling water system of Hualong No. 1 equipment[J]. Nuclear Power Engineering, 2018, 39(S1): 115-118.
[4]Lévesque D, Kruger S E, Lamouche G, et al. Thickness and grain size monitoring in seamless tube-making process using laser ultrasonics[J]. NDT & E International, 2006, 39(8): 622-626.
[5]Cheong Y, Kim K, Kim D. High-temperature ultrasonic thickness monitoring for pipe thinning in a flow-accelerated corrosion proof test facility[J]. Nuclear Engineering and Technology, 2017, 49(7): 1463-1471.
[6]Jaime P, Pouyan K, Frederic C. Shear waves with orthogonal polarisations for thickness measurement and crack detection using EMATs[J]. NDT & E International, 2020, 111: 102212.
[7]Liu Y Q, Yang S, Gan C. A novel laser ultrasonic thickness measurement method for metal plate based on spectral analysis[C]// IEEE. International Conference on Ubiquitous Robots & Ambient Intelligence.Goyang, Korea, 2015: 324-329.
[8]邢丽, 张弘治, 陈曦, 等. 基于双目视觉的薄壁零件变形量测量[J]. 光子学报, 2020, 49(7): 87-100.
Xing L, Zhang H Z, Chen X, et al. Deformation measurement of thin-walled parts based on binocular vision[J]. Acta Photonica Sinica, 2020, 49(7): 87-100.
[9]刘海波. 大型不规则薄壁零件测量—加工一体化制造方法与技术[D]. 大连: 大连理工大学, 2012.
[10]杨军涛, 李志勇, 范力予, 等. 基于线激光扫描的焊缝表面缺陷检测系统[J]. 焊接, 2016(2): 19-23,70.
Yang J T, Li Z Y, Fan L Y, et al. Surface Defect Detection System of Welding Seam Based on Line Laser Scanning[J]. Welding & Joinjing, 2016(2): 19-23,70.
[11]宗文鹏, 李广云, 李明磊, 等. 激光扫描匹配方法研究综述[J]. 中国光学, 2018, 11(6): 914-930.
Zong W P, Li G Y, Li M L, et al. Summary of Research on Laser Scanning Matching Method[J]. Chinese Optics, 2018, 11(6): 914-930.
[12]徐鹏, 徐方勇, 陈辉. 融合配准的多站室外大场景激光点云分割[J]. 计量学报, 2022, 43(3): 325-330.
Xu P, Xu F Y, Chen H. Large Scene Segmentation of Outdoor Laser Point Cloud Based on Fusion and Registration[J]. Acta Metrologica Sinica, 2022, 43(3): 325-330.
[13]陆艺, 葛文琦, 郭斌. 基于标准球距离约束的工业机器人参数标定[J]. 计量学报, 2020, 41(9): 1048-1054.
Lu Y, Ge W Q, Guo B. Parameter calibration of industrial robot based on standard ball distance constraint[J]. Acta Metrologica Sinica, 2020, 41(9): 1048-1054.
[14]Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]// IEEE. Proceedings third international conference on 3-D digital imaging and modeling.Quebec City, Canada, 2001: 145-152.
[15]Li W L, Yin Z P, Huang Y A, et al. Three-dimensional point-based shape registration algorithm based on adaptive distance function[J]. IET Computer Vision, 2011, 5(1): 68-76.
[16]张玉存, 李亚彬, 付献斌. 基于曲率约束的点云分割去噪方法[J]. 计量学报, 2020, 41(10): 1218-1225.
Zhang Y C, Li Y B, Fu X B. Point Cloud Segmentation De-noising Method Based on Curvature Constraint[J]. Acta Metrologica Sinica, 2020, 41(10): 1218-1225.
[17]周煜, 张万兵, 杜发荣, 等. 散乱点云数据的曲率精简算法[J]. 北京理工大学学报, 2010, 30(7): 785-789.
Zhou Y, Zhang W B, Du F R, et al. Curvature reduction algorithm for scattered point cloud data[J]. Transactions of Beijing Institute of Technology, 2010, 30(7): 785-789.
[18]唐泽宇, 高保禄, 窦明亮. 基于加权最小二乘法曲率计算的点云精简算法[J]. 计算机工程与设计, 2019, 40(6): 1606-1610,1659.
Tang Z Y, Gao B L, Dou M L. Point cloud simplification algorithm based on curvature calculation of weighted least squares method[J]. Computer Engineering and Design, 2019, 40(6): 1606-1610,1659. |
|
|
|