|
|
Calibration of Synchrotron Radiation X-ray Energy from 6keV to 70keV |
HUANG Lin-ru1,YAO Xin-bo1,WANG Ji2,CHEN Can1,GUO Si-ming2,GUO Xiao-wei1,WANG Kai1,SHOU Xia1 |
1. Zhejiang Province Institution of Metrology, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract In order to establish relevant national standards in the field of synchrotron radiation X-ray measurement with high fluence rate, the calibration method of synchrotron radiation X-ray energy was studied.Three energy points of 6, 10 and 20keV were selected on the Beijing Synchrotron Radiation Facility for experiments, and the relationship curve between the calibration factor of the transfer standard detector and the radiant energy was approximated to a straight line, and the change trend showed a linear decrease. The calibration experiment at 20keV energy point and different diameter aperture conditions verified that the calibration factor of the transfer detector is related to the photon flux when the light source irradiates to the reference ionization chamber and the transfer detector. 10~70keV energy calibration experiment was conducted on Shanghai Synchrotron Radiation Facility, the fitting curve of transfer standard detectors calibration factor was obtained. The change trend of the energy in 10~20keV is consistent with the change trend of the calibration factor obtained in the Beijing synchrotron radiation device. The calibration factor of the 30~70keV energy segment increases steadily and slowly with the increase of energy. The class A uncertainties of the calibration expriment of each energy point were evaluated, which provided technical data for subsequent establishment of the national measurement standard synchrotron radiation X-ray air specific release kinetic energy value transmission system.
|
Received: 16 July 2020
Published: 14 November 2022
|
|
|
|
|
[1]尚智丛, 王鑫. 国家目标引导下的大科学装置建设——以上海同步辐射光源为例 [J]. 科技管理研究, 2016, 36(2):37-41.
Shang Z C, Wang X. The Large-scale Scientific Facility and the National Goal:A Case Study on SSRF [J]. Science and Technology Management Research, 2016, 36(2):37-41.
[2]刘金元, 薛凤仪, 李平, 等. 真空紫外-软X 射线波段(5~105)nm探测器校准装置的研制 [J]. 计量学报, 2008, 29(3):275-279.
Liu J Y, Xue F Y, Li P, et al. Detector Calibration Facility in the Wavelength Range of VUV-Soft X-Ray (5~105)nm [J]. Acta Metrologica Sinica, 2008, 29(3):275-279.
[3]崔聪悟, 崔明启, 易荣清. 软X射线绝对光强测量系统及其标定 [J]. 高能物理与核物理, 1998, 22(2):180-185.
Cui C W, Cui M Q, Yi R Q. Design and Calibration of the Measuring system for Soft X-ray Absolute Intensity [J]. High Energy Physics and Nuclear Physics, 1998, 22(2):180-185.
[4]冼鼎昌. 北京同步辐射装置及其应用 [M]. 南宁:广西科学技术出版社, 2016:30-74.
[5]OBrien M, Bueermann L. Comparison of NIST and PTB Air-Kerma Standards for Low-Energy X-Rays [J]. Journal of Research of the National Institute of Standards and Technology, 2009, 114(6):321-331.
[6]李华鹏, 郑伟宁, 赵屹东, 等. 同步辐射硬X射线光子通量的绝对测量 [J]. 光学精密工程, 2017, 25(11):2845-2851.
Li H P, Zheng W N, Zhao Y D, et al. Absolute measurement of photon flux for synchrotron radiation hard X-rays [J]. Optics and Precision Engineering, 2017, 25(11):2845-2851.
[7]张曦, 宋明哲, 倪宁, 等. 低能自由空气电离室优化设计 [J]. 宇航计测技术. 2019, 39(1):47-51.
Zhang X, Song M Z, Ni N, et al. Optimum Design of Free-air Ionization Chambers for Measuring Low Energy X-ray [J]. Journal of Astronautic Metrology and Measurement, 2019, 39(1):47-51.
[8]Aruev P N, Kolokolnikov Y M, Kovalenko N V, et al. Characterization of spatial homogeneity of sensitivity and radiation resistance of semiconductor detectors in the soft X-ray range [J]. Nuclear Instruments and Methods in Physics Research A, 2009, 603(1-2):58-61.
[9]黄林茹, 姚馨博, 王继, 等. 硅光电二极管探测器在低能X射线辐射场上的标定 [J]. 计量学报, 2021, 42(6):806-810.
Huang L R, Yao X B, Wang J, et al. Calibration of silicon photodiode detector on low energy X-ray radiation fields [J]. Acta Metrologica Sinica, 2021, 42(6):806-810.
[10]吴金杰, 王培伟, 段小娟, 等. 低能X射线基准辐射装置的建立 [J]. 计量学报, 2011, 32(6A):9-13.
Wu J J, Wang P W, Duan X J, et al. The Establishment of Radiation Primary Standard in the Range of Low Energy X-rays [J]. Acta Metrologica Sinica, 2011, 32(6A):9-13.
[11]杜海燕, 李凡, 吴金杰, 等. 同步辐射单能X射线空气质量衰减系数的测量 [J]. 计量学报, 2019, 40(2):333-336.
Du H Y, Li F, Wu J J, et al. The Measurement of Synchrotron Radiation Single-energy X-ray Mass-attenuation Coefficient of Air [J]. Acta Metrologica Sinica, 2019, 40(2):333-336.
[12]宋飞,赵瑞,丁卫撑, 等. X射线环境辐射监测仪器校准方法的研究[J]. 计量学报, 2021, 42(9):1237-1243.
Song F, Zhao R, Ding W C, et al. Research on Calibration Method of X-ray Environmental Radiation Monitoring Instrument[J]. Acta Metrologica Sinica, 2021, 42(9):1237-1243.
[13]郭思明,吴金杰,张健. 中国计量科学研究院单能X射线标定装置与测试项目介绍[J]. 计量科学与技术,2021, 65(3):3-8.
Guo S M, Wu J J, Zhang J. Introduction of Monoenergetic X-Ray Calibration Device and Test Items of NIM[J]. Metrology Science and Technology,2021, 65(3):3-8.
[14]Hubbell J H, Seltzer S M. X-Ray Mass Attenuation Coefficients[EB/OL]. https://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/air.html. |
|
|
|