|
|
Design of Abnormal Electronic Beep Recognition System Based on Wavelet Denoising and ResNet Classification Network |
WEN Yi-kai,CHEN Le,FU Ya-qiong |
College of Mechanical and Electrical Engineering, China Jiliang University,Hangzhou,Zhejiang 310018,China |
|
|
Abstract Electronic products usually use electronic beep as an alarm function. In order to detect whether the buzzer notification function is qualified in the quality inspection link of electronic products in the factory environment, wavelet noise reduction combined with ResNet network classification technology is used for buzzer detection. A buzzer sound recognition system is designed, the buzzer signal s1 with the PC sound card and the radio microphone, and uses the wavelet packet scale coefficient comparison method to realize the noise reduction and preprocessing of the collected buzzer signal to obtain the signal s2, and obtain the signal time-frequency characteristics through the wavelet transform of the signal s2 figure p, then use the ResNet18 network model to analyze the feature map p to get the buzzer detection result,the recognition accuracy is 97.5%. The system uses PyQt5 to design a human-computer interaction interface, which mainly includes functions such as signal feature display, signal acquisition parameter setting, identification object selection, data communication, and data persistence. Experiments have proved that the system is simple to operate, stable in operation, and strong in scalability.
|
Received: 13 October 2021
Published: 14 November 2022
|
|
|
|
|
[1]李晶, 孙农亮, 滕升华. 基于声音识别的设备状态检测算法[J]. 信息技术, 2015, 39(6):94-98.
Li J, Sun N L, Teng S H. State identification algorithm for substation devices based on so-und recognition [J]. Information Technology, 2015, 39(6):94-98.
[2]杨明, 林先锋, 钟伟强, 等. 音频分析在蜂鸣器测试中的实践[J]. 电子质量, 2018(10):78-81.
Yang M, Lin X F, Zhong W Q, et al. Practice of Audio Analysis in Buzzer Test [J]. Electronics Quality, 2018(10):78-81.
[3]肖文龙, 王维博, 刘勇, 等. 基于小波分析理论的特高压输电线路故障选相研究[J]. 电力系统保护与控制, 2016, 44(17):90-96.
Xiao W L, Wang W B, Liu Y, et al. Research of fault phase selection on UHV transmission lines based on wavelet analysis [J]. Power System Protection and Control, 2016, 44(17):90-96.
[4]陈维兴, 崔朝臣, 李小菁, 等. 基于多种小波变换的一维卷积循环神经网络的风电机组轴承故障诊断[J]. 计量学报, 2021, 42(5):615-622.
Chen W X, Cui C C, Li X Q, et al. Bearing Fault Diagnosis of Wind Turbine Based on Multi-wavelet-1D Convolutional LSTM [J]. Acta Metrologica Sinica, 2021, 42(5):615-622.
[5]张立峰, 周雷. 基于小波融合的电容层析成像图像重建[J]. 计量学报, 2019, 40(2):285-288.
Zhang L F, Zhou L. Image Reconstruction for Electrical Capacitance Tomography Based on Wavelet Fusion [J]. Acta Metrologica Sinica, 2019, 40(2):285-288.
[6]任红军, 郭东歌, 陈海永, 等. 小波去噪在激光气体遥测系统中的应用[J]. 自动化与仪器仪表, 2021(7):195-199.
Ren H J, Guo D G, Chen H Y, et al. The application of wavelet de-noising in laser gas re-mote system [J]. Automation and Instrumentation, 2021(7):195-199.
[7]马敏, 王涛. 双小波非凸稀疏正则化去噪算法研究[J]. 计量学报, 2021, 42(1):85-90.
Ma M, Wang T. Research on Double Wavelet Nonconvex Sparse Regularization Denoising Algorithm [J]. Acta Metrologica Sinica, 2021, 42(1):85-90
[8]Zhdanov D S, Zemlyakov I Y, Kosteley Y V, et al. Choice of Wavelet Filtering Parameters for Processing Fetal Phonoc-ardiograms with High Noise Level[J]. Biomedical Engineering, 2021, 55(3):194-198.
[9]卢芸, 徐骏. 基于小波包分解的风电混合储能容量配置方法[J]. 电力系统保护与控制, 2016, 44(11):149-154.
Lu Y, Xu J. Wind power hybrid energy strong capacity configuration based on wavelet packet decomposition [J]. Power System Protection and Control, 2016, 44(11):149-154.
[10]He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition [C] //IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 2016.
[11]Zhang Y, Li J, Wei S, et al. Heartbeats Cla-ssification Using Hybrid Time-Frequency An-alysis and Transfer Learning Based on ResN-et [J]. IEEE journal of biomedical and heal-th informatics, 2021, 25(11):4175-4184.
[12]朱超平, 杨艺. 基于YOLO2和ResNet算法的监控视频中的人脸检测与识别[J]. 重庆理工大学学报(自然科学), 2018, 32(8):170-175.
Zhu C P, Yang Y. Face Detection and Reco-gnition in Monitoring Video Based on YOL-O2 and ResNet Algorithm [J]. Journal of Ch-ongqing University of Technology(Natural Science), 2018, 32(8):170-175.
[13]Sarwinda D, Paradisa R H, Bustamam A, et al. Deep Learning in Image Classification us-ing Residual Network (ResNet) Variants for Detection of Colorectal Cancer[J]. Procedia Computer Science, 2021, 179:423-431.
[14]郑一力, 张露. 基于迁移学习的卷积神经网络植物叶片图像识别方法[J]. 农业机械学报, 2018, 49(S1):354-359.
Zheng Y L, Zhang L. Plant Leaf Image Recognition Method Based on Transfer Learning with Convolutional Neural Networks [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1):354-359.
[15]张丽艳, 赵艺璇, 牟钰鹏, 等. 基于ResNet50的列车常见垃圾自动分类算法[J]. 大连交通大学学报, 2021, 42(4):101-105.
Zhang L Y, Zhao Y X, Mou Y P, et al. Automatic Sorting Method for Common Garbage in Train based on ResNet50 [J]. Journal of Dalian Jiaotong University, 2021, 42(4):101-105.
[16]孙鹏飞, 刘丽兰, 陈恩来. 基于ROS的服务机器人可视化编程平台设计与实现[J]. 工业控制计算机, 2019, 32(5):118-120.
Sun P F, Liu L L, Chen E L. Visual Progra-mming Platform for Service Robot Based o-n ROS [J]. Industrial Control Compute, 2019, 32(5):118-120. |
|
|
|