|
|
Low-frequency Calibration of Sensitivity of Large-planar Hydrophones in Dynamic Environment of Pressure and Temperature |
TONG Hao-yang,YI Yan,LI Shui,CHEN Yi,ZHAO Han |
Hangzhou Applied Acoustic Research Institute, Hangzhou, Zhejiang 310000, China |
|
|
Abstract In view of the lack of sensitivity calibration means of low-frequency large-planar hydrophone in variable temperature and pressure environment, a semi-traveling-wave tube method is proposed. By controlling the transducers at the extremes of the tube, a traveling-wave champ is generated on one side of the hydrophone. On the other side, there is a standing-wave champ. The general expression of the sensitivity is deduced. Under normal temperature and pressure, the calibration results are in good agreement with the traditional low-frequency calibration method, which proves that this method can effectively calibrate the sensitivity of large-planar hydrophone. The calibration results of hydrophone sensitivity under different temperature and pressure environment show that this method is feasible to calibrate hydrophone under variable temperature and pressure, and provides a method for the calibration of hydrophone sensitivity in larg-planar. The uncertainty of measurement is evaluated, the expanded uncertainty is 3dB.
|
Received: 21 April 2020
Published: 24 September 2021
|
|
|
|
|
[1]Beatty L G, Prandoni J F. Underwater Sound transducer calibration facility for the 10 to 4000Hz frequency range at hyrostatic pressure to 10, 000 psig[R]. AD693091. Naval Research Laboratory, 1969.
[2]郑士杰, 袁文俊, 廖荣兴, 等. 水声计量测试技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 1995: 241-244, 410-416.
[3]陈毅, 黄勇军, 费腾. 10MPa静水压下20Hz~200kHz标准水听器校准[J]. 高压物理学报, 2013, 27(3): 454-460.
Chen Y, Huang Y J, Fei T. Calibration of 20Hz~200kHz standard hydrophone under 10MPa hydrostatic pressure[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 454-460.
[4]李水, 罗马奇, 范进良, 等. 水声材料低频声性能的行波管测量[J]. 声学学报, 2007, 32(4): 349-355.
Li S, Luo M Q, Fan J L, et al. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials[J]. Acta Acustica, 2007, 32(4): 349-355.
[5]葛辉良, 何祚镛, 袁文俊. 大面积高分子压电薄膜水听器对湍流边界层压力起伏的自噪声响应[J]. 声学学报, 1999, 24(2): 155-156.
Ge H L, He Z Y, Yuan W J. The self-noise response of a large-planar PVDF hydrophone to turbulent boundary layer pressure fluctuation[J]. Acta Acustica, 1999, 24(2): 155-156.
[6]李世平, 莫喜平, 张运强, 等. 复合液腔高灵敏度水听器[J]. 应用声学, 2017, 36(1): 54-58.
Li S P, Mo X P, Zhang Y Q, et al. A high sensitivity hydrophone with composite fluid cavity[J]. Journal of Applied Acoustics, 2017, 36(1): 54-58.
[7]韩云峰, 李昭, 郑翠娥, 等. 一种基于长基线交汇的超短基线定位系统精度评价方法[J]. 物理学报, 2015, 64(9): 341-347.
Han Y F, Li Z, Zheng C E, et al. A precision evaluation method of USBL positioning systems based on LBL triangulation[J]. Acta Physica Sinica, 2015, 64(9): 341-347.
[8]陈毅, 陈卫华, 袁文俊, 等. 高静水压下自由场水声声压标准装置的研究[J]. 计量学报, 2008, 29(3): 257-261.
Chen Y, Chen W H, Yuan W J, et al. The Development of Free-field Underwater Acoustic Pressure Standard at High Hydro static Pressure[J]. Acta Metrologica Sinica, 2008, 29(3): 257-261.
[9]陈毅,贾广慧,费腾, 等. 5Hz~10kHz频率范围矢量水听器校准国际主导比对[J]. 计量学报, 2020, 41(10): 1279-1283.
Chen Y,Jia G H, Fei T, et al. The Pilot Comparison Calibration of Vector Receivers in the Frequency Range 5Hz to 10kHz[J]. Acta Metrologica Sinica, 2020, 41(10): 1279-1283.
[10]刘晋昌, 费腾, 刘明波, 等. 矢量水听器自动校准系统的研究及实现[J]. 计量学报, 2011, 32(6): 526-530.
Liu J C, Fei T, Liu M B, et al. Study and Implementation of the Auto-calibration System of Vector Hydrophone[J]. Acta Metrologica Sinica, 2011, 32(6): 526-530.
[11]陈毅, 平自红, A E Isaev, 等. 250Hz~8kHz频率范围水听器自由场校准补充比对[J]. 计量学报, 2016, 37(1): 84-89.
Chen Y, Ping Z H, A E Isaev, et al. Supplementary Comparison of Free-field Hydrophone Calibrations in the Frequency Range 250 Hz to 8 kHz[J]. Acta Metrologica Sinica, 2016, 37(1): 84-89.
[12]袁文俊, 陈毅, 张晓岚, 等. 0. 01~1Hz水声声压标准装置的研究[J]. 计量学报, 2004, 22(3): 270-274.
Yuan W J, Chen Y, Zhang X L, et al. The Research of Underwater Acoustics Pressure Standard in the Frequency Band of 0. 01 to 1 Hz[J]. Acta Metrologica Sinica, 2004, 22(3): 270-274.
[13]潘孝洪, 商国华, 郝豫川. 高频水声声压标准装置[J]. 计量学报, 1987, 8(1): 39-43.
Pan X H, Shang G H, Hao Y C. High frequency underwater acoustic pressure standard device[J]. Acta Metrologica Sinica, 1987, 8(1): 39-43.
[14]李水, 沈建新, 唐海清, 等. 水声材料低频声性能的驻波管测量[J]. 计量学报, 2003, 24(3): 221-224.
Li S, Shen J X, Tang H Q, et al. Measurement for low-frequency properties of underwater acoustic materials in standing wave tube[J]. Acta Metrologica Sinica, 2003, 24(3): 221-224.
[15]王成, 郑慧峰, 王月兵, 等. 基于近场测量法的水声换能器声场重建方法研究[J]. 计量学报, 2016, 37(5): 520-524.
Wang C, Zheng H F, Wang Y B, et al. Research on Hydroacoustic Transducer Sound Field Reconstruction Method Based on Near-field Measurement Method[J]. Acta Metrologica Sinica, 2016, 37(5): 520-524.
[16]刘永伟, 陈梦英, 张超. 接收声基阵相位一致性校准研究[J]. 计量学报, 2009, 30(4): 345-349.
Liu Y W, Chen M Y, Zhang C. Calibration of Phase Coherence in the Sound Received Array[J]. Acta Metrologica Sinica, 2009, 30(4): 345-349.
[17]卢苇, 蓝宇, 石桂欣. 开缝压电圆环深海水听器[J]. 声学学报, 2017, 32(6): 83-90.
Lu W, Lan Y, Shi G X. Slot piezoelectric ring deep ocean hydrophone[J]. Acta Acustica, 2017, 32(6): 83-90. |
|
|
|