|
|
Dynamic Calibration Method of a Force Transducer Based on Parameter Identification |
JIANG Wen-song1,4,YIN Xiao2,LI Hong-yang3,LUO Zai1,YANG Jun2,4,WANG Zhong-yu4 |
1. Colloge of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Beijing Changcheng Institute of Metrology & Measurement, China Aviation Industry Group Co Ltd, Beijing 100095, China
3. Science & Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing, 100076, China
4. School of Instrumentation & Optoelectronic Engineering, Beihang University, Beijing 100191, China |
|
|
Abstract To evaluate the influence of structural parameters on the time-varying characteristics of a force transducer, a dynamic calibration method is proposed. First, a parametric mathematical model is built according to the structural of the transducer and the transfer function. Second, the model parameters of the transducer are identified from its spectral characteristics by utilizing the least square method. Third, the geometric relations of the transfer function in the frequency domain is built to evaluate the stability of the calibration model based on a frequency analysis method. As well, the suggested method is verified by a drop hammer impact force calibration device. The experimental result shows that the aboved method can identify the structural parameters of the transducer with a small standard deviation and evaluate the relative stability of the calibrated model.
|
Received: 20 August 2020
Published: 24 May 2021
|
|
|
|
|
[1]Moljevic S. Influence of quality infrastructure on regional development[J]. International Journal for Quality Research, 2016, 10(2): 433-452.
[2]Nicholas V, Chijioke A. Traceable calibration and demonstration of a portable dynamic force transfer standard[J]. Metrologia, 2017, 54(4):83-98.
[3]Harish K, Chitra S, Anil K, et al. Retrospective investigations of force measurement[J]. MAPAN-Journal of Metrology Society of India, 2015, 30(4): 291-302.
[4]Zheng Y L, Zhao M R, Jiang J L, et al. Dynamic Force Transducer Calibration Based on Electrostatic Force[J]. IEEE Access, 2019, 7:48998-49003.
[5]Prilepko M Y. Calibration and validation of dynamic force transducers[J]. Measurement Techniques, 2017, 60(7): 691-695.
[6]Nozato H, Ota A, Kokuyama W, et al. An enhanced primary shock calibration procedure to reduce the zero shift effect of piezoelectric transducers by using a virtual amplifier [J]. Measurement Science and Technology, 2016, 27(9): 0950071-0950074.
[7]张力. 激光干涉法进行正弦力校准研究[J]. 计量学报, 2005, 26(4): 337-342.
Zhang L. Investigation of Interferometric Methods in Sinusoidal Force Calibration[J]. Acta Metrologica Sinica, 2005, 26(4): 337-342.
[8]江文松, 王中宇, 张力, 等. 力传感器惯性质量的改进Monte Carlo校准方法[J]. 北京航空航天大学学报,2018,44(2): 342-348.
Jiang W S, Wang Z Y, Zhang L, et al. Inertia mass of force transducers based on a modified Monte Carlo calibration method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 342-348.
[9]Kobusch M, Brunsa T, Klaus L, et al. The 250 kN primary shock force calibration device at PTB[J]. Measurement, 2013, 46(5): 1757-1761.
[10]尹肖, 张力, 王宇, 等. 动态力校准中力传感器端部惯性质量测量方法研究[J]. 计测技术, 2014, 34(6): 50-54.
Yin X, Zhang L, Wang Y, et al. Measurement Methods of the Equivalent Mass of Force Sensors in Dynamic Force Calibration[J]. Metrology & Measurement Technology, 2014, 34(6): 50-54.
[11]商佳尚,王宇. 动态力校准中需要规范的若干问题[J]. 计测技术,2014,34(2):1-10.
Shang J L, Wang Y. Problems Needing Specification in Dynamic Force Calibrations[J]. Metrology & Measurement Technology, 2014, 34(2):1-10.
[12]江文松,罗哉,王中宇,等. 基于载荷重构的冲击力校准方法[J]. 振动与冲击,2020, 39(13): 22-26.
Jiang W S, Luo Z, Wang Z Y, et al. Impact force calibration method based on load reconstruction[J]. Journal of Vibration and Shock, 2020, 39(13): 22-26.
[13]Meng F, Zhang Z M, Zhang Y, et al. Dynamic force calibration by impact excitation[C]//16th International Congress of Metrology, 2014, 77: 1-4.
[14]Jain S K, Kumar H, Titus S K, et al. Metrological characterization of the new 1 MN force standard machine of NPL India[J]. Measurement, 2012, 45(3): 590-596.
[15]江文松, 王中宇, 罗哉, 等. 基于蒙特卡罗法的冲击力溯源系统不确定度评定[J].计量学报, 2020, 41(4): 448-454.
Jiang W S, Wang Z Y, Luo Z, et al. Uncertainty Evaluation on the Traceable Measurement System of the Impact Force Based on a Monte Carlo Method[J]. Acta Metrologica Sinica, 2020, 41 (4): 448-454.
[16]Liang W, Yang X X, Yao J H, et al. Calibration of Force Standard Machine by Build-up Force Transfer System in the Highest Range Up To 60MN [J]. Mapan-Journal of Metrology Society of India, 2020, 35, 151-164.
[17]付立悦,宋爱国. 六维力传感器静态标定系统误差分析[J].计量学报, 2019, 40(2):295-299.
Fu L R, Song A G. Error Analysis of Six-axis Force/Torque Sensor′s Static Calibration System[J]. Acta Metrologica Sinica, 2019, 40(2):295-299. |
|
|
|