|
|
Calibration Algorithm and Experimental Research of Cooperative Robot Based on Laser Tracker |
CHEN Xiang-jun1,3,ZUNONG Gulinaer2,XUE Zi3,LI Da-chao1,BAN Zhao3,4,REN Guo-ying2,3 |
1. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University,Tianjin 300072, China
2. Xinjiang Uygur Autonomous Region Research Institute of Measurement and Testing, Urumqi, Xinjiang 830011, China
3. National Institute of Metrology, Beijing 100029, China
4. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China |
|
|
Abstract In order to improve the absolute positioning accuracy of the robot end,a method for calibrating the geometric parameters of the robot based on laser tracker measurement is proposed to identify and compensate the parameter errors of the cooperative robot.In order to avoid singularity when the two axes of the robot arm are parallel,MDH parameter method is used to establish the error model. In order to define the measurement data on the same coordinate axis,the robot tool coordinate transformation is combined (the translational transformation of the target ball′s center point relative to the robot′s terminal coordinate system),and the levenberg marquardt (LM) method is used to identify the model parameter error of the robot.Through the simulation,experimental calculation and calibration of JAKA cooperative robot,the average error,the standard deviation and the maximum error of the robot are reduced respectively by 70.58%,56.76% 57.44%.The results show that the calibration algorithm can effectively identify the model parameter errors of the robot,and compensate the model parameters of the robot to improve the absolute positioning accuracy.
|
Received: 13 May 2020
Published: 24 May 2021
|
|
Fund:the National KeyResearch and Development Program of China;the National KeyResearch and Development Program of China |
|
|
|
[1]Chen G, Li T, Chu M, et al, Review on kinematics calibration technology of serial robots [J]. International Journal of Precision Engineering and Manufacture, 2014, 15 (8): 1759-1774.
[2]Slamani M, Nubiola A, Bonev I. Assessment of the positioning performance of an industrial robot [J]. Industrial Robot, 2012, 39 (1): 57-68.
[3]齐俊德,张定华,李山,等. 工业机器人绝对定位误差的建模与补偿 [J]. 华南理工大学学报 (自然科学版),2016,44 (11): 113-118.
Qi J D, Zhang D H, Li SH, et al. Modeling and compensation of absolute positioning error of industrial robots [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44 (11): 113- 118.
[4]王龙飞, 李旭, 张丽艳, 等. 工业机器人定位误差规律分析及基于ELM算法的精度补偿研究 [J]. 机器人,2018,40 (6): 843-851, 859.
Wang L F, Li X, Zhang L Y, et al. Analysis of the positioning error of industrial robots and accuracy compensation based on ELM algorithm [J]. Robot, 2018, 40 (6): 843-851, 859.
[5]戴厚德,曾现萍,游鸿修,等. 基于光学运动跟踪系统的机器人末端位姿测量与误差补偿 [J]. 机器人,2019,41 (2): 206-215.
Dai H D, Zeng X P, You H X, et al. Pose measurement and error compensation of the robot end-effector based on an optical tracking system [J]. Robot, 2019, 41 (2): 206-215.
[6]Hayati S A. Robot arm geometric link parameter estimation [C]//The 22nd IEEE Conference on Decision and Control. San Antonio, USA, 1983: 1477-1483.
[7]Zhang H, Roth Z S, Hamano F. A complete and parametrically continuous kinematic model for robot manipulators [C]//IEEE International Conference on Robotics and Automation. Cincinnati, USA, 1992, 8 (4): 451-463.
[8]Yang X, Wu L, Li J, et al. A minimal kinematic model for serial robot calibration using POE formula [J]. Robotics and Computer-Integrated Manufacturing, 2014, 30 (3): 326-334.
[9]唐宇存, 李锦忠, 林安迪, 等. 基于三坐标测量机的机器人位姿精度检测方法 [J]. 计算机工程与应用, 2020, 56 (5): 257-262.
Tang Y C, Li J Z, Lin A D, et al. Method for measuring robot pose accuracy based on coordinate measuring machine [J]. Computer Engineering and Applications. 2020, 56 (5): 257-262.
[10]张旭, 郑泽龙. 主动光立体标靶检测及其在工业机器人位姿测量中的应用 [J]. 中国机械工程, 2016, 27 (19): 2594-2601.
Zhang X, Zheng Z L. Active Light Stereo Target Detection and Its Applications in Industrial Robots Pose Measurement [J]. Chinese Journal of Mechanical Engineering, 2016, 27 (19): 2594-2601.
[11]刘春学, 郑哲恩, 孙坚, 等. 六自由度工业机器人本体标定实验的研究 [J]. 机床与液压, 2017, 45 (5): 31-34, 111.
Liu CH X, Zheng Z E, Sun J, et al. Research on Six Degree of Freedom Industrial Robot of Body Calibration Experiment [J]. Machine Tool & Hydraulics, 2017, 45 (5): 31-34, 111.
[12]王跃灵, 旺玥, 王琪, 等. 基于自适应粒子群遗传算法的柔性关节机器人动力学参数辨识 [J]. 计量学报, 2020, 41 (1): 60-66.
Wang Y L, Wang Y, Wang Q, et al. Dynamic parameter identification of flexible joint robot based on adaptive particle swarm optimization genetic algorithm [J]. Acta Metrologica Sinica, 2020, 41 (1): 60-66.
[13]赵春芳, 李江昊, 张大伟. 基于改进免疫遗传优化蚁群算法的移动机器人路径寻优研究 [J]. 计量学报, 2019, 40 (3): 505-510.
Zhao C F, Li J H, Zhang D W. Path optimization of mobile robots based on improved immune genetic optimi-zation ant colony algorithm [J]. Acta Metrologica Sinica, 2019, 40 (3): 505-510.
[14]刘宇, 李瑰贤, 夏丹, 等. 基于改进遗传算法辨识空间机器人动力学参数 [J]. 哈尔滨工业大学学报, 2010, 42 (11): 1734-1739.
Liu Y, Li G X, Xia D, et al. Identification of dynamic parameters of space robot based on improved genetic algorithm [J]. Journal of Harbin Institute of Techn-ology, 2010, 42 (11): 1734-1739.
[15]皇甫亚波,杭鲁滨,程武山,等. 基于LM算法的机器人运动学标定 [J]. 轻工机械, 2017, 35 (4): 1-7.
Huangfu Y B, Hang L B, Cheng W S, et al. Kinematic calibration for robot based on LM algorithm [J]. Light Industry Machinery, 2017, 35 (4): 1-7.
[16]费业泰. 误差理论与数据处理[M]. 北京: 机械工业出版社. 2004.
[17]任瑜, 张丰, 郭志敏, 等. 一种通用的工业机器人位姿检测方法 [J]. 计量学报, 2018, 39 (5): 615-621.
Ren Y, Zhang F, Guo Z M, et al. A General industrial Robot pose detection method [J]. Acta Metrologica Sinica, 2015, 39 (5): 615-621.
[18]熊有伦. 工业机器人技术基础[M]. 武汉:华中科技大学出版社, 1999.
[19]蔡自兴. 机器人学[M]. 北京: 清华大学出版社, 2000.
[20]Gopalakrishnan B.Least-squares methods for solving linear programming problems [D]. Atlanta:Georgia Institute of Technology,2002. |
|
|
|