|
|
Detection of Novel Coronavirus Pneumonia Based on CT Image with Convolutional Neural Network Processing |
GUO Bao-su1,ZHUANG Ji-chao1,WU Feng-he1,CHE Xiao-shuang2,YUAN Lin-dong2,QI Jun2 |
1. College of Mechanical Engineering, Yanshan University, Qinhuangdao, Heibei 066004, China
2. Liaocheng Peoples Hospital, Liaocheng, Shandong 252000, China |
|
|
Abstract To improve the ability to distinguish novel coronavirus pneumonia from common pneumonia and assist medical staff in chest CT examination of pneumonia patients, a detection method using convolution neural network and CT image based on artificial intelligence image analysis was proposed. First, a convolution neural network model was built, and the influence of model depth on detection results was evaluated to select the best network structure. Second, a tabu genetic algorithm was proposed to obtain the optimal hyper-parameter combination of the network model and to enhance the performance of the model. Finally, the best network model was employed to distinguish novel coronavirus pneumonia from common pneumonia. Experimental results show that the accuracy, MCC, and F1Score of the proposed detection algorithm are 93.89%, 93.32% and 91.40%, respectively, which has higher detection accuracy than other algorithms.
|
Received: 17 April 2020
Published: 20 April 2021
|
|
|
|
|
[1]Fang Y, Zhang H, Xie J, et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR[EB]. https://pubs.rsna.org/doi/full/10.1148/radiol.2020200432, 2020-02-19.
[2]Bernheim A, Mei X, Huang M, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection[EB]. https:/pubs.rsna.org/doi/10.1148/radiol.2020200463, 2020-02-20.
[3]冯雨, 易本顺, 吴晨玥, 等. 基于三维卷积神经网络的肺结节识别研究[J]. 光学学报. 2019, 39(6): 256-261.
Feng Y, Yi B S, Wu C Y, et al. Pulmonary nodule recognition based on three-dimensional convolution neural network[J]. Acta Optica Sinica, 2019, 39(6): 256-261.
[4]马圆, 王风, 韩勇, 等. 基于深度信念网络检测PET/CT图像肺结节良恶性[J]. 中国医学影像技术. 2020, 36(1): 77-80.
Ma Y, Wang F, Han Y, et al. Classification of pulmonary nodule on PET/CT image based on deep belief network[J]. Chin J Med Imaging Technol, 2020, 36(1): 77-80.
[5]黄盛, 李菲菲, 陈虬. 基于改进深度残差网络的计算断层扫描图像分类算法[J]. 光学学报. 2020, 40(3): 56-64.
Huang S, Li F F, Chen Q. Computed tomography image classification algorithm based on improved deep residual network[J]. Acta Optica Sinica, 2020, 40(3): 56-64.
[6]Zhu W, Zhuang J, Guo B, et al. An optimized convolutional neural network for chatter detection in the milling of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9): 3881-3895.
[7]Shalu C, Sachin T, Varun B, et al. Convolutional neural network based approach towards motor imagery tasks EEG signals classification[J]. IEEE Sensors Journal, 2019, 19(12): 4494-4500.
[8]Ma M, Liu L, Chen Y L. A KM-net model based on k-means weight initialization for images classification[C]//2018 IEEE 20th International Conference on High Performance Computing and Communications, Exeter, United Kingdom, 2018.
[9]Ijjina E P, Chalavadi K M. Human action recognition using genetic algorithms and convolutional neural networks[J]. Pattern Recognition, 2016, 59: 199-212.
[10]Zheng M, Tang W, Zhao X. Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing[J]. International Journal of Geographical Information Science, 2019, 33(2): 314-345.
[11]Zhang M, Li H Q, Lyu J, et al. Multi-level CNN for lung nodule classification with gaussian process assisted hyperparameter optimization[EB]. hattps://arXive-prints:arXiv:1901.00276, 2019-01-02.
[12]Wang Y, Zhang H, Zhang G. cPSO-CNN: An efficient PSO-based algorithm for fine-tuning hyper-parameters of convolutional neural networks[J]. Swarm and Evolutionary Computation, 2019, 49: 114-123.
[13]谢未央, 陈彦博, 王季勇, 等. 基于卷积神经网络的CT图像肺结节检测[J]. 计算机工程与设计. 2019, 40(12): 3575-3581.
Xie W Y, Chen Y B, Wang J Y, et al. Detection of pulmonary nodules in CT images based on convolutional neural networks[J]. Computer Engineering and Design, 2019, 40(12): 3575-3581.
[14]程淑红, 张仕军, 赵考鹏. 基于卷积神经网络的生物式水质监测方法[J]. 计量学报, 2019, 40(4): 721-727.
Chen S H, Zhang S J, Zhao K P. Biological water quality monitoring method based on convolution neural network[J]. Acta Metrologica Sinica, 2019, 40(4): 721-727.
[15]Zhang J P, Xie Y T, Xia Y, et al. Attention residual learning for skin lesion classification[J]. IEEE Transactions on Medical Imaging, 2019, 38(9): 2092-2103.
[16]孙美艳, 田玉玲. 基于混沌免疫算法的深度信念网络参数优化[J]. 计算机工程与设计. 2019, 40(9): 2643-2648.
Sun M Y, Tian Y L. Parameter optimization of deep belief network based on chaos immune algorithm[J]. Computer Engineering and Design, 2019, 40(9): 2643-2648.
[17]Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for simplicity: the all convolutional net[EB]. hattp: //arXiv preprint arXiv: 1412. 6806, 2014-12-21.
[18]Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. J. Mach. Learn. Res, 2014, 15(1): 1929-1958.
[19]Xia Y, Fu Z. A tabu search algorithm for distribution network optimization with discrete split deliveries and soft time windows[J]. Cluster Computing, 2019, 22(6): 15447-15457.
[20]张沫, 郑慧峰, 倪豪, 等. 基于遗传算法优化支持向量机的超声图像缺陷分类[J]. 计量学报. 2019, 40(5): 887-892.
Zhang M, Zheng H F, Ni H, et al. Ultrasonic image defect classification based on support vector machine optimized by genetic algorithm [J]. Acta Metrologica Sinica, 2019, 40(5): 887-892.
[21]Boussad I, Lepagnot J, Siarry P. A survey on optimization metaheuristics[J]. Information Sciences, 2013, 237: 82-117.
[22]Wu Q, Wang Y, Glover F. Advanced tabu search algorithms for bipartite boolean quadratic programs guided by strategic oscillation and path relinking[J]. Informs Journal on Computing, 2019, 32(1): 74-89.
[23]杨振良, 汪俊亮, 张洁, 等. 数据驱动的晶圆图缺陷模式识别方法[J]. 中国机械工程. 2019, 30(2): 230-236.
Yang Z L, Wang J L, Zhang J, et al. Data driven wafer pattern defect pattern recognition method[J]. China Mechanical Engineering, 2019, 30(2): 230-236. |
|
|
|