|
|
Virtual Sampling of Fired Coal in Power Plant and Evaluation of Uncertainty of Mean Calorific Value |
LIU Fu-guo1,2,GUO Qin-guang3,YIN Bing-yi3,WANG Shou-en1,2 |
1. State Grid Shandong Electric Power Research Institute, Jinan, Shandong 250003, China
2. Shandong Electric Power Research Institute, Jinan, Shandong 250003, China
3. Huadian Weifang Power Generation Co. Ltd, Weifang, Shandong 261000, China |
|
|
Abstract The calorific value of coal fired in power plant has not been continuously measured in extensive pattern. In generator set efficiency measurement, the laboratory test results of a small amount of coal sample are used to express the calorific value of all coal fired during the measurement period, which brings about greater uncertainty in measurement. The uncertainty of mean calorific value of coal samples was studied. When the calorific sample belonged to normal distribution, or the number of samples for average value was more than 30, the uncertainty of mean calorific value could be evaluated by traditional methods according to the central limit theorem. When the calorific sample was in non-normal distribution, and the number of samples for average value was less than 30, random samples of calorific value could be produced by sampling inspection with screening, thereafter, the extended uncertainty under non-normal distribution was computed by virtual samples. The practical application showed that the method presented was reasonable and could meet the needs of uncertainty analysis in efficiency measurement of generating units.
|
Received: 26 August 2019
Published: 20 April 2021
|
|
|
|
|
[1]韩璞, 乔弘, 王东风, 等. 火电厂热工参数软测量技术的发展和现状[J]. 仪器仪表学报, 2007, 28(6): 1139-1146.
Han P, Qiao H, Wang D F, et al. Development and current status of thermal parameter soft-sensing technique in power plant[J]. Chinese Journal of Scientific Instrument, 2007, 28(6): 1139-1146.
[2]刘福国, 崔福兴, 刘豪杰. 电厂日常煤耗检测的不确定度分析[J]. 热能动力工程, 2019, 34(3): 140-146.
Liu F G, Cui F X, Liu H J. Uncertainty analysis of daily coal consumption rate detection in Generator unit by positive balance method[J]. Journal of Engineering for Thermal Engery and Power, 2019, 34(3): 140-146.
[3]陈继军, 宋璟, 张继斌. 影响电厂供电煤耗正反平衡因素分析[J]. 华北电力技术, 2009, (12): 15-17.
Chen J J, Song J, Zhang J B. Evaluation of uncertainty in measurement based on a Monte Carlo method [J]. North China Electric Power, 2009, (12): 15-17.
[4]刘福国, 崔福兴. 电厂锅炉入炉煤采制样不确定度分析与模拟[J]. 计量学报, 2019, 40(4): 603-609.
Liu F G, Cui F X. Analysis and Simulation of Coal Sampling Uncertainty in Coal-fired Utility Boiler [J]. Acta Metrologica Sinica, 2019, 40(4): 603-609.
[5]李娜. 供电煤耗与煤场盈亏的实证统计分析[J]. 电力与能源, 2015, 36(6): 894-896.
Li N. Empirical statistical analysis of power supply coal consumption and coal yard profit/loss[J]. Power and Energy, 2015, 36(6): 894-896.
[6]盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京: 高等教育出版社, 2001.
[7]丁健, 李红菊. 中心极限定理在统计推断中的应用[J]. 长春师范大学学报, 2015, 34(2): 11-13.
Ding J, Li H J. The Application of Central Limit Theorem in Statistical Inference[J]. Journal of Changchun Normal University, 2015, 34(2): 11-13.
[8]杨桂元. 中心极限定理及其在统计分析中的应用[J]. 统计与信息论坛, 2000, 15(3): 13-15.
Yang G Y. The Application of Central Limit Theorem in Statistical Analysis[J]. Statistics & Information Tribune, 2000, 15(3): 13-15.
[9]徐海明, 胡晋, 朱军. 构建作物种质资源核心库的一种有效抽样方法[J]. 作物学报, 2000, 26(2): 157-162.
Xu H M, Hu J, Zhu J. An Efficient M ethod of Sampling Core ColIection from Crop Germplasm[J]. Acta Agronomica Sinica, 2000, 26(2): 157-162.
[10]方兴华, 宋明顺, 顾龙芳, 等. 基于自适应蒙特卡罗方法的测量不确定度评定[J]. 计量学报, 2016, 37(4): 452-456.
Fang X H, Song M S, Gu L F, et al. Application of adaptive Monte Carlo method on measurement uncertainty evaluation [J]. Acta Metrologica Sinica, 2016, 37(4): 452-456.
[11]陈凌峰. 标准不确定度A类评定中极差法的深入讨论[J]. 计量学报, 2019, 40(2): 347-352.
Chen L F. The further discussion of the range method in the type A evaluation of standard uncertainty[J]. Acta Metrologica Sinica, 2019, 40(2): 347-352.
[12]刘福国, 王守恩, 崔福兴. 锅炉入炉煤质检测数据正态性分析及应用[J]. 热力发电, 2018, 47(7): 34-39.
Liu F G, Wang S E, Cui F X. Normal analysis and application of daily coal quality monitoring data of utility boiler[J]. Thermal power generation, 2018, 47(7): 34-39.
[13]周品. MATLAB概率与数理统计[M]. 北京: 清华大学出版社, 2012.
[14]关维琦, 窦艳红, 王子乔. 煤弹筒发热量的测量不确定度评定[J]. 长春理工大学学报, 2012, 35(3): 169-171.
Guan W Q, Dou Y H, Wang Z Q. Evaluation of Uncertainty in Measurement of Bomb Calorific Value of Coal[J]. Journal of Changchun University of Science and Technology, 2012, 35(3): 169-171.
[15]林力, 周惠康, 郁明芳. 煤炭高位发热量的测量不确定度评定[J]. 煤炭科学技术, 2003, 31(10): 11-13.
Lin L, Zhou H K, Yu M F. Evaluation of uncertainty in measurement of high calorific value of coal[J]. Coal science and technology, 2003, 31(10): 11-13.
[16]李书杰, 钱艺华, 陈天生, 等. 煤恒容高位发热量测量不确定度评定[J]. 热力发电, 2005, (4): 28-30.
Li S J, Qian Y H, Chen T S, et al. Evaluation of Uncertainty in Measurement if Constant Volume Gross Calorific Value for Coal[J]. Thermal Power Generation, 2005, (4): 28-30.
[17]张建同, 孙昌言, 王世进. 应用统计学[M]. 北京: 清华大学出版社, 2015.
[18]钱善华, 葛世荣, 吴兆宏. 扩展不确定度中包含因子的确定方法[J]. 中国计量学院学报, 2005, 16(2): 112-115.
Qian S H, Ge S R, Wu Z H. The methods of calculating the coverage factor in the expanded uncertainty [J]. Journal of China Jiliang University, 2005, 16(2): 112-115.
[19]周洪伟. 正态性检验的几种常用的方法[J]. 南京晓庄学院学报, 2012, (3): 13-18.
Zhou H W. Normal test method of data and its statistical software implementation[J]. Journal of Nanjing Xiaozhuang university, 2012, (3): 13-18.
[20]余学锋, 于杰, 王亚梅, 等. 基于多项式混沌理论的不确定度评定与分析[J]. 计量学报, 2015, 36(1): 107-112.
Yu X F, Yu J, Wang Y M, et al. Measurement Uncertainty Evaluation and Analysis Based on Polynomial Chaos Approach[J]. Acta Metrologica Sinica, 2015, 36(1): 107-112.
[21]陈凌峰. 抽样引起的测量不确定度评定[J]. 计量学报, 2020, 41(7): 891-896.
Chen L F. Evaluating the Sampling Contribution to the Measurement Uncertainty[J]. Acta Metrologica Sinica, 2020, 41(7): 891-896. |
|
|
|