|
|
Granularity of Terrigenous Clastic Rock Using Sieving Method and Laser Particle Size |
YOU Fan1,GENG Xiang2 |
1. Beijing Geoscience and Resource School of China University of Geosciences, Beijing 100083, China
2. Yumen Oilfield Exploration and Development Reaearch Institute, Jiuquan, Gansu 735019, China |
|
|
Abstract The particle size of the terrigenous clastic rocks is determined by the combination of the sieving method and the laser particle size method, in order to ensure the concerted synergy between the sieve method and the laser particle size method, the analytical data of the laser particle size method is corrected, comparing the probability cumulative frequency curve of sediment rocks before correction and after correction in different geological ages, it is found that the corrected curve can make better characterize the particle size distribution of terrigenous clastic rock. The L9 (34) orthogonal optimization scheme is carried out for the three factorsof the sampler stirring speed (A), pump speed (B) and ultrasonic intensity (C) which influenced the background measurement of the Malvern MS 2000 laser particle size analyzer, The optimal measurement conditions are: A is 600r/min, B is 2000r/min, which makes the background measurement stable, and concluding that the influence degree on the background measurement can be expressed by B>A>error>C. The particle size standard curve is calibrated with 9 reference materials, the residual error between the standard curve of the particle size and the standard curve of instrument was small, ranging from 0.795% to 2.934%, the relative standard deviation is between 0.24% and 0.33%. This method is suitable for the particle size analysis of terrestrial clastic rocks in various geological ages.
|
Received: 10 June 2019
Published: 23 March 2021
|
|
|
|
|
[1]倪寿亮. 粒度分析方法及应用[J]. 广东化工, 2011, 38(2): 223-224.
Ni S L. Particle Size Analysis Method and Its Application[J]. Guangdong Chemical Industry, 2011, 38(2): 223-224.
[2]孙淼, 黄鹭,高思田, 等. 多角度动态光散射法的纳米颗粒精确测量[J]. 计量学报, 2020, 41(5): 529-537.
Sun M, Huang L, Gao S T, et al. Accurate Measurement of Nanoparticles by Using Multi-angle Dynamic Light Scattering [J]. Acta Metrologica Sinica, 2020, 41(5): 529-537.
[3]贾楠, 顾建飞, 苏明旭. 基于超声谱分析的颗粒粒度测量研究[J]. 计量学报, 2019, 40(3): 466-471.
Jia N, Gu J F, Su M X. Characterization of Particle Size Distribution Based on Ultrasonic Spectra Analysis[J]. Acta Metrologica Sinica, 2019, 40(3): 466-471.
[4]王运泉, 孟凡顺. 粗碎屑岩的粒度分析[J]. 煤田地质与勘探, 1987, (6): 11-14.
[5]王慎文, 谢春安, 唐渊明, 等. 激光法粒度筛析校正研究[J]. 沉积学报, 2012, 30(4): 716-723.
Wang S W, Xie C A, Tang Y M, et al. Rectification Study of Particle Analysing Result Between Laser Instrument and Sieving Method [J]. Acta Sedimentologica Sinica, 2012, 30(4): 716-723.
[6]杨竞, 崔俊, 周莉, 等. 砂岩筛析法与激光粒度法数据相关关系研究[J]. 青海石油, 2009, 27(1): 17-23.
Yang J, Cui J, Zou L, et al. Research on the correlation between sandstone sifting method and laser particle size method [J]. Qinghai Petroleum, 2009, 27(1): 17-23.
[7]冉敬, 杜谷, 潘忠习. 沉积物粒度分析方法的比较[J]. 岩矿测试, 2011, 30(6): 669-676.
Ran J, Du G, Pan Z X. Study on Methods for Particle Size Analysis of Sediment Samples [J]. Rock and Mineral Analysis, 2011, 30(6): 669-676.
[8]李明龙, 郑德顺, 龚文磊, 等. 济源盆地中侏罗统马凹组砂岩粒度特征分析[J]. 沉积与特提斯地质, 2013, 33(2): 26-30.
Li M L, Zheng D S, Gong W L, et al. Grain Size Characteristic Analysis for the Sandstones from the Middle Jurassic Ma’ ao Formation in Jiyuan Basin, Henan[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(2): 26-30.
[9]李文凯, 吴玉新, 黄志民, 等. 激光粒度分析和筛分法测粒径分布的比较[J]. 中国粉体技术, 2007, (5): 10-13.
Li W K, Wu Y X, Huang Z M, et al. Measurement Results Comparison between Laser Particle Analyzer and Sieving Method in Particle Size Distribution [J]. China Powder Science and Technology, 2007, (5): 10-13.
[10]贺存君, 王振新, 杨东彪, 等. 激光粒度仪在铁矿石目级粒度检测中的应用[J]. 现代矿业, 2009, 479(3): 107-108.
He C J, Wang Z X, Yang D B, et al. Application of Laser Grain Size Analyzer in Grain Analysis of Iron Ore[J]. Modern Mining, 2009, 479(3): 107-108.
[11]殷杰, 邓永锋, 徐飞. 激光衍射粒度仪在连云港软土颗粒分析中的应用[J]. 河海大学学报, 2008, 36(3): 380-383.
Yin J, Deng Y F, Xu F. Application of Laser Grain Size Analyzer in Grain Analysis of the Soft Clay in Lianyungang[J]. Journal of Hohai University, 2008, 36(3): 380-383.
[12]Husáková L, Urbanová I, afránková M, et al. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO2 interference by least-squaresbackground correction[J]. Talanta, 2017, 175(1): 93-100.
[13]杨飞, 邹妞妞, 史基安, 等. 柴达木盆地北缘马仙地区古近系碎屑岩沉积环境粒度概率累积曲线特征[J]. 天然气地球科学, 2013, 24(4): 690-699.
Yang F, Zhou N N, Shi J A, et al. Probability Cumulative Grain Size Curves in the PaleogeneClastic Sediments in Maxian Region of Northern Qaidam Basin[J]. Natural Gas Geoscience, 2013, 24(4): 690-699.
[14]罗曼, 杨建红, 陈思嘉, 等. 骨料粒度在线检测系统的实验研究与开发[J]. 计量学报, 2017, 38(2): 179-183.
Luo M, Yang J H, Chen S J, et al. Development of Aggregate Particle Size On-line Detection System [J]. Acta Metrologica Sinica, 2017, 38(2): 179-183.
[15]舒霞, 吴玉程, 陶庆秀, 等. Mastersizer 2000 分析报告解析[J]. 实验技术与管理, 2011, 28(2): 38-41.
Shu X, Wu Y C, Tao Q X, et al. An Analysis on Report of Mastersizer 2000 Laser Particle Size Analyzer [J]. ExperimentalTechnology and Mangement, 2011, 28(2): 38-41.
[16]Younis A, Ahmadi Z, Adams M G, et al. A simple method for quantitative analysis of elements by WD-XRF using variable dilution factors in fusion bead technique for geologic specimens[J]. X-Ray Spectrometry, 2017, 46(1): 69-76. |
|
|
|