|
|
Design and Methodology Research of a Sensor Based on Reflection Probe for Focused Ultrasonic Measurement |
XU Ao-xuan,CAO Yong-gang,ZHENG Hui-feng,WANG Yue-bing |
College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China |
|
|
Abstract Based on the tungsten steel probe and PVDF piezoelectric film material, a new sensor was designed and developed for focused ultrasound measurement. At the same time, the physical model of the sensor was established through theoretical analysis and finite element analysis, and the internal acoustic field and reflection phenomenon of the sensor were simulated to obtain the waveform of the output from the sensor and its amplitude. Finally, the sensor developed was used to detect the acoustic pressure and acoustic intensity in the focal area of the focusing transducer, and the results were compared with the results based on theoretical simulation. Within the acoustical power range of 10W, the feasibility and reliability of the new sensor as well as its measurement theory and method were proved for focused ultrasound measurement. The new reflection probe sensor will provide a new method for the measurement of high intensity focused ultrasonic field.
|
Received: 12 November 2019
Published: 18 February 2021
|
|
|
|
|
[1]Jolesz F A. MRI-Guided Focused Ultrasound Surgery[J]. Annual review of medicine, 2009, 60: 417-430.
[2]Kim D, Kim M, Kang K, et al. Development of an algorithm for HIFU focus visualization[C]//2014 IEEE International Ultrasonics Symposium. Chicago, IL, USA, 2014: 1642-1645.
[3]代红亚. HIFU“帽式”消融模式的离体及活体动物实验研究[D]. 重庆: 重庆医科大学, 2017.
[4]Albert Gelet, Sebastien Crouzet, Olivier Rouviere, et al. High-Intensity Focused Ultrasound (HIFU) for Prostate Cancer[M]. Management of Prostate Cancer. Springer Berlin Heidelberg, 2017.
[5]Farny C H, Holt R G, Roy R A. The Correlation Between Bubble-Enhanced HIFU Heating and Cavitation Power[J]. IEEE Transactions on Biomedical Engineer-ing, 2010, 57(1): 175-184.
[6]Fukada E. History and recent progress in piezoelectric polymer research[C]//1998 IEEE Ultrasonics Sympo-sium, 1998.
[7]周刘聪, 罗健林, 李秋义, 等. PVDF薄膜压电传感特性及其在工程结构监测应用研究进展[J]. 功能材料, 2018, 49(12): 12079-12083.
Zhou L C, Luo J L, Li Q Y, et al. Research progress of PVDF thin film piezoelectric sensing characteristics and its application in engineering structure monitoring[J]. Functional materials, 2018, 49(12): 12079-12083.
[8]李全义, 李发琪, 寿文德. 高强度聚焦超声(HIFU)的声场检测[J]. 世界科技研究与发展, 2007, 29(6): 56-60.
Li Q Y, Li F Q, Shou W D. High intensity focused ultrasound (HIFU) detection of sound field[J]. World science and technology research and development, 2007, 29(6): 56-60.
[9]汪钱纯, 叶险峰, 曹永良, 等. 用布拉格光纤光栅对聚焦超声场的检测[J]. 传感技术学报, 2005, 18(1): 171-173, 176.
Wang Q C, Ye X F, Cao Y L, et al. Detection of focused ultrasonic field with Bragg fiber grating[J]. Journal of sensing technology, 2005, 18(1): 171-173+176.
[10]陈毅, 张军, 金晓峰, 等. 一种光纤光栅水听器灵敏度校准技术研究[J]. 光子学报, 2012, 41(9): 1059-1064.
Chen Y, Zhang J, Jin X F, et al. Study on a sensitivity calibration technique for fiber grating hydrophone[J]. Acta photonica sinica, 2012, 41(9): 1059-1064.
[11]Martinez R, Vera A, Leija L. Finite element HIFU transducer acoustic field modeling evaluation with measurements[C]//2012 Pan American Health Care Exchanges, 2012.
[12]杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 南京: 南京大学出版社, 2012.
[13]Martinez R, Leija L, Vera A. Ultrasonic attenuation in pure water: Comparison between through-transmission and pulse-echo techniques[C]// 2010 Pan American Health Care Exchanges, 2010.
[14]Gibbs D F. Frequency dispersion of piezoelectric effect in PVDF[J]. Journal of Physics. D: Applied Physics, 1981, 14(3): 507-509.
[15]熊琦. PVDF压电薄膜的力学性能和压电效应实验研究[D]. 武汉: 华中科技大学, 2018.
[16]具典淑, 周智, 欧进萍. PVDF压电薄膜的应变传感特性研究[J]. 功能材料, 2004, 35(4): 450-452, 456.
Gu D S, Zhou Z, Ou J P. Strain sensing characteristics of PVDF piezoelectric thin film[J]. Functional materi-als, 2004, 35(4): 450-452, 456.
[17]卫敏. 直流偏压下热释电材料测量系统的研究[D]. 武汉: 华中科技大学, 2012.
[18]于群, 王月兵, 曹文旭, 等. 聚焦换能器声强和声功率测量方法研究[J]. 中国测试, 2017, 43(1): 27-32.
Yu Q, Wang Y B, Cao W X, et al. Study on mea-surement method of acoustic intensity and acoustic power of focused transducer[J]. China test, 2017, 43(1): 27-32.
[19]熊久鹏, 王月兵, 赵鹏. 一种高频换能器的声场推算方法[J]. 计量学报, 2018, 39(6): 884-887.
Xiong J P, Wang Y B, Zhao P. A sound field calculation method for high-frequency transducers[J]. Acta Metrologica Sinica, 2018, 39(6): 884-887.
[20]贾梦雯,赵鹏,王月兵. 高静水压下换能器阻抗特性的测量方法研究[J]. 计量学报, 2020, 41(4): 461-468.
Jia M W, Zhao P, Wang Y B. Research on Measurement Method of Electrical Impedance of Transducer under High Hydrostatic Pressure[J]. Acta Metrologica Sinica, 2020, 41(4): 461-468.
[20]王浩宇, 冯秀娟, 祝海江, 等. 二维声场的光学扫描方法[J]. 计量学报, 2018, 39(3): 381-385.
Wang H Y, Feng X J, Zhu H J, et al. Optical scanning method of two-dimensional sound field[J]. Acta Metrologica Sinica, 2018, 39(3): 381-385. |
|
|
|