|
|
Test Method of Thermal Conductivity of Pouch Lithium-ion Cell Based on Thermography |
DONG Ze-wen,HOU De-xin,YE Shu-liang |
Institute of Industry and Trade Measurement Technique, China Jiliang University, Hangzhou, Zhejiang 310018, China |
|
|
Abstract To provide accurate thermal conductivity value for thermal design of pouch lithium-ion cell, a test method based on thermography was proposed, which could invert the cross-plane and in-plane thermal conductivity of cell at the same time with the temperature filed data of cell surface recorded by thermal camera, avoiding the uncertainty factors brought by traditional contact temperature measurement. Several ternary polymer lithium-ion cell samples with different specifications were tested, and one type of samples was measured with steady-state method as a reference. The experimental results showed that the relative standard deviation of cross-plane and in-plane conductivity was less than 3%, and the relative deviation compared with the results of steady-state method of cross-plane conductivity was 3.1%. Therefore, the method was reliable and could provide reference data for the thermal design of cells.
|
Received: 02 July 2020
Published: 06 December 2021
|
|
|
|
|
[1]张剑波, 吴彬, 李哲. 车用动力锂离子电池热模拟与热设计的研发状况与展望[J]. 集成技术, 2014, 3(1): 18-26.
Zhang J B, Wu B, Li Z. Thermal modeling and thermal design of Lithium-ion batteries for automotive application: status and prospects [J]. Journal of Integration Technology, 2014, 3(1): 18-26.
[2]Sloop S. Recycling methods for lithium-ion and other batteries[C]//13th International Battery Materials Recycling Seminar. Fort Lauderdale, FL, USA, 2009.
[3]Gomez J, Nelson R, Kalu E E, et al. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects[J]. Journal of Power Sources, 2011, 196(10): 4826-4831.
[4]Shafiei A, Momeni A, Williamson S S. Battery modeling approaches and management techniques for Plug-in Hybrid Electric Vehicles[C]// IEEE Vehicle Power and Propulsion Conference. Chicago, IL, USA, 2011.
[5]Abdul-Quadir Y, Heikkil P, Lehmuspelto T, et al. Thermal investigation of a battery module for work machines[C]//12th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. Linz, Austria, 2011.
[6]Zhang S S, Xu K, Jow T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115: 137-140.
[7]Fleckenstein M, Sebastian F, Bohlen O,et al. Thermal Impedance Spectroscopy—A method for the thermal characterization of high power battery cell[J]. Journal of Power Sources, 2013, 223: 259-267.
[8]Murashko K A, Mityakov A V, Pyrhnen J, et al. Thermal parameters determination of battery cells by local heat flux measurements[J]. Journal of Power Sources, 2014, 271: 48-54.
[9]Vertiz G, Oyarbide M, Macicior H, et al. Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model[J]. Journal of Power Sources, 2014, 272: 476-484.
[10]Bazinski S J, Wang X. Experimental study on the influence of temperature and state-of-charge on the thermophysical properties of an LFP pouch cell[J]. Journal of Power Sources, 2015, 293: 283-291.
[11]Bazinski S J, Wang X, Sangeorzan B P, et al. Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells[J]. Energy, 2016, 114: 1085-1092.
[12]冯旭宁, 李建军, 王莉, 等. 锂离子电池各向异性导热的实验与建模[J]. 汽车安全与节能学报, 2012, 3(2): 158-164.
Feng X N, Li J J, Wang L, et al. Experiments and modeling of anisotropic thermal conductivity of lithium-ion batteries[J]. Journal of Automotive Safety and Energy, 2012, 3(2): 158-164.
[13]林坚生, 宋文吉, 高日新, 等. LiFePO4动力电池热物性测定及温升特性研究[J]. 电源技术, 2015, 39(4): 739-742.
Lin J S, Song W J, Gao R X, et al. Study on thermo-physical property measurement and temperature rise characteristic of LiFePO4 power battery[J]. Chinese Journal of Power Sources, 2015, 39(4): 739-742.
[14]Zhang J B, Wu B, Li Z, et al. Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries[J]. Journal of Power Sources, 2014, 259: 106-116.
[15]王晓娜, 厉阳, 侯德鑫, 等. 基于热成像的薄片材料热扩散率快速无损检测[J]. 计量学报, 2016, 37(3): 260-264.
Wang X N, Li Y, Hou D X, et al. A rapid and nondestructive detection on the thermal diffusivity of thin materials based on thermography[J]. Acta Metrologica Sinica, 2016, 37(3): 260-264.
[16]厉阳, 侯德鑫, 叶树亮. 基于热成像的材料热扩散率测量方法研究[J]. 计量学报, 2017, 38(1): 28-33.
Li Y, Hou D X, Ye S L. Research on measurement method of thermal diffusivity of materials based on thermography [J]. Acta Metrologica Sinica, 2017, 38(1): 28-33.
[17]余开科, 田裕鹏, 王平, 等. 基于脉冲涡流热成像的面内方向性热扩散率测量[J]. 计量学报, 2019, 40(6): 1030-1036.
Yu K K, Tian Y P, Wang P, et al. Measurement of in-plane directional thermal diffusivity using pulsed eddy current thermography[J]. Acta Metrologica Sinica, 2019, 40(6): 1030-1036.
[18]Chen S C, Wan C C, Wang Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111-124.
[19]程蕾. 被测目标热参数反演算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[20]Cola?o, M J, Orlande H R B, DulikravichIII G S. Inverse and optimization problems in heat transfer[J]. Journal of the Brazilian Society of Mechanical ences and Engineering, 2006, 28(1): 1-24.
[21]周逸, 林鸿, 冯晓娟, 等. 石墨烯及其复合材料导热系数测量的研究进展[J]. 计量学报, 2020, 41(2): 159-169.
Zhou Y, Lin H, Feng X J, et al. Research the Progresses on Measurement of Thermal Conductivity of Graphene and Graphenes Composites[J]. Acta Metrologica Sinica, 2020, 41(2): 159-169. |
|
|
|