|
|
A Design of Three Frequency Standard Ultrasonic Power Source Based on DDS |
CHEN Shen-li1,2,GUO Guang-jian1,2,LI Min-yi1,2 |
1.Guangdong Institute of Metrology,Guangzhou,Guangdong 510405,China
2.Guangdong Provincial Key Laboratory of Modern Geometric and Mechanical Metrology Technolgy,Guangzhou,Guangdong 510405,China |
|
|
Abstract Combining theoretical method research and specific hardware design, a three-frequency standard ultrasonic transducer based on LiNbO3 single crystal substrate is proposed. The DDS chip is controlled by a single-chip microcomputer to generate sinusoidal signals of three frequencies. After a high-frequency operational amplifier circuit, the standard ultrasonic transducer is excited to output standard ultrasonic power, thereby forming a three-frequency standard ultrasonic power source, which can be used as a standard for ultrasonic power transmission. The three-frequency standard ultrasonic power source realizes the output of 18.9MHz high-frequency ultrasonic waves. The results of comparison with the British NPL measurement show that the error of the ultrasonic power value at the three frequency points is not more than ±5%, which verifies the validity of the data output by the three-frequency point standard ultrasonic power source.
|
Received: 21 July 2020
Published: 01 December 2021
|
|
|
|
|
[1]贾楠, 顾建飞, 苏明旭. 基于超声谱分析的颗粒粒度测量研究 [J]. 计量学报, 2019, 40 (3): 466-471.
Jia N, Gu J F, Su M X. Characterization of Particle Size Distribution Based on Ultrasonic Spectra Analysis [J]. Acta Metrologica Sinica, 2019, 40 (3): 466-471.
[2]罗登林, 丘泰球, 卢群. 超声波技术及应用(Ⅰ)——超声波技术 [J]. 日用化学工业, 2005, 35 (5): 323-326.
Luo D L, Qiu T Q, Lu Q.Utrasound technology and its applications (Ⅰ)——Utrasound technology [J]. China Surfactant Detergent & Cosmetics, 2005, 35 (5): 323-326.
[3]JJG 639—1998医用超声诊断仪超声源检定规程 [S]. 1998.
[4]JJG 868—1994毫瓦级标准超声源检定规程 [S]. 1994.
[5]IEC 61161-2013 Ultrasonics—Power measurement—Radiation force balances and performance requirements [S].2013.
[6]李月国, 范坤泰, 张录州, 等. 高频压电陶瓷谐振器的研制 [J]. 压电与声光, 2001, 23 (3): 183-185, 235.
Li Y G, Fan K T, Zhang L Z, et al. Development of High Frequency Piezoelectric Ceramic Resonator [J]. Piezoelectrics & Acoustooptics, 2001, 23 (3): 183-185, 235.
[7]刘晓宙, 叶式公, 龚秀芬, 等. 压电薄膜超声换能器的特性研究 [J]. 声学学报, 1999, 24 (4): 429-437.
Liu X Z, Ye S G, Gong X F, et al. Study of charac-teristics of copolymer ultrasound transducer [J]. Acta Acustica, 1999, 24 (4): 429-437.
[8]陈沈理. 基于铌酸锂单晶基片的多频点超声功率换能器的设计与实现 [D]. 广州: 华南理工大学, 2015.
[9]陈沈理, 韩强, 杨德俊. 一种标准超声功率源China: ZL201910285173.5[P]. 2019-04-10.
[10]陈沈理, 晋建秀. 基于铌酸锂单晶基片的双频点超声功率换能器的设计与实现 [J]. 电子技术与软件工程, 2015, (23): 105-106.
Chen S L, Jing J X.Design and implementation of dual frequency ultrasonic power transducer based on LiNbO3 single crystal substrate [J]. Electronic Technology & Software Engineering, 2015 (23): 105-106.
[11]纪华伟, 李旭龙, 胡小平. 改进的正交相关超声换能器阻抗角测量新方法 [J]. 计量学报, 2016, 37 (1): 79-83.
Ji H W, Li X L, Hu X P. A New Improved Orthogonal Correlation Method of Measuring Impedance Angle of Ultrasound Transducer [J]. Acta Metrologica Sinica, 2016, 37 (1): 79-83.
[12]广州唯创电子有限公司. DDS芯片的简单介绍[EB/OL]. http://www.eepw.com.cn/article/187189.htm. 2011-11-19.
[13]Analog Devices. AD9910中文手册[EB/OL].https://max.book118.com/html/2018/0523/168172944. shtm.2018-05-28.
[14]Semilink. 有源低频和高频滤波电路[EB/OL]. https://wenku.baidu.com/view/887a3272fc4ffe473368ab7a.html.2018-07-01.
[15]宏晶科技. STC12C5A60S2系列单片机器手册 [Z]. 2011: 8-10.
[16]JJF 1001—2011通用计量术语及定义 [S]. 2011. |
|
|
|