|
|
Progress and Prospect of Research on Polarimetric Current Sensor |
XU Shao-yi1,XUE Hong-yu1,XING Fang-fang2,ZHANG Shuan3,CHEN Guang1,PENG Qiang1,DONG Feng1 |
1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
2. School of Mechatronic Engineerin, Xuzhou College of Industrial Technology, Xuzhou, Jiangsu 221005, China
3. Lingbi County Power Supply Company, State Grid Anhui Electric Power Co. Ltd., Suzhou, Anhui 234200, China |
|
|
Abstract With the continuous development of materials and technologies, the performance and accuracy of plarimetric current sensors have been greatly improved compared to the past. They have been able to meet the actual needs of today's projects. Looking back at the development of polarized fiber current sensors, the key technologies are gradually breakthroughs, such as temperature compensation, suppression of linear birefringence, variable rotation rate fibers, integrated optical waveguide technology, and the production of spun highly birefringence fibers. Based on these new technologies, a new polarimetric current sensor is proposed. The sensor is guided by the single mode fiber. It has a simple structure, high accuracy, and low cost.
|
Received: 25 May 2020
Published: 18 October 2021
|
|
Fund:National Natural Science Foundation Youth Fund Project;Chinese Postdoctoral Science Foundation Special Funding Project (batch 11);China Postdoctoral Science Fund General Support Project (batch 65);Open subject of National Rail Transit Electrification and Automation Engineering Technology Research Center;Xuzhou City promotes scientific and technological innovation projects |
|
|
|
[1]杨庆, 孙尚鹏, 司马文霞, 等. 面向智能电网的先进电压电流传感方法研究进展 [J]. 高电压技术, 2019, 45 (2): 349-367.
Yang Q, Sun S P, Sima W X, et al. Research progress of advanced voltage and current sensing methods for smart grids [J]. High Voltage Technology, 2019, 45 (2): 349-367.
[2]王书强, 张军齐, 崔绍颖, 等. 脉冲大电流校准及溯源技术研究 [J]. 计量学报, 2020, 41 (3): 296-300.
Wang S Q, Zhang J Q, Cui S Y, et al. Pulse high current calibration system [J]. Acta Metrologica Sinica, 2020, 41 (3): 29-300.
[3]李奇,李传生,梁波, 等. 光纤直流大电流传感器非线性机理及校准技术[J]. 计量学报, 2021, 42 (4): 409-414.
Li Q, Li C S, Liang B, et al. Nonlinear Mechanism and Calibration Technology of Fiber-Optic DC High Current Sensor[J]. Acta Metrologica Sinica, 2021, 42 (4): 409-414.
[4]Sawa T, Kurosawa K, Kaminishi T, et al. Develo-pment of optical instrument transformers [J]. IEEE Transactions on Power Delivery, 1990, 5 (2): 884-891.
[5]Kurosawa Kiyoshi. Development of fiber-optic current sensing technique and its applications in electric power systems [J]. Photonic Sensors, 2014, 4 (1): 12-20.
[6]Samimi M H, Akmal A A S, Mohseni H. Optical current transducers and error sources in them: A Review [J]. IEEE Sensors Journal, 2015, 15 (9): 4721-4728.
[7]谢小军,朱才溢,李庆先,等. 反射式Sagnac型光纤宽带大电流测量仪的研制与性能评估[J]. 计量学报, 2020, 41 (8): 989-996.
Xie X J,Zhu C Y,Li Q X, et al. Development and Performance Evaluation of Reflective Sagnac Optical Fiber Broadband High Current Measuring Instrument[J]. Acta Metrologica Sinica, 2020, 41 (8): 989-996.
[8]Laming R I, Payne D N. Electric current sensors employ-ing spun highly birefringent optical fibers [J]. Journal of Lightwave Technology, 1989, 7 (12), 2084-2094.
[9]Kurosawa K, Shirakawa K, Kikuchi T. Development of optical fiber current sensors and their applications[C]//Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference: Asia and Pacific, Dalian, China, 2005.
[10]Cruden A, Michie C, Madden I, et al. Optical current measurement system for high-voltage applications [J]. Measurement, 1998, 24 (2), 97-102.
[11]Nascimento I M, Brígida A C S, Baptista J M, et al. Novel optical current sensor for metering and protection in high power applications [J]. Instrumentation Science and Technology, 2016, 44 (2): 148-162.
[12]Bohnert K, Gabus P, Nehring J, et al. Fiber-optic current sensor for electrowinning of metals [J]. Journal of Lightwave Technology, 2007, 25 (11), 3602-3609.
[13]Ulrich R, Simon A. Polarization optics of twisted single-mode fibers [J]. Applied Optics, 1979, 18 (13): 2241-2251.
[14]Tang D, Rose A H, Day G W, et al. Annealing of lin-ear birefringence in single-mode fiber coils: Applications to optical fiber current sensors [J]. Journal of Light-wave Technology, 1991, 9 (8): 1031-1037.
[15]Briffod F, Thevenaz L, Nicati P A, et al. Polarimetric current sensor using an in-line Faraday rotator [J]. IEI-CE Transactions on Electronics, 2000, 83 (3): 331-335.
[16]Alasia D, Thevenaz L. A novel all-fibre configuration for a flexible polarimetric current sensor [J]. Measur-ment Science, 2004, 15 (8): 1525-1530.
[17]Kurosawa K, Yoshida S, Sakamoto K. Polarization properties of the flint glass fiber [J]. Journal of Light-wave Technology, 1995, 13 (7): 1378-1384.
[18]Kurosawa K, Yamashita K, Sowa T, et al. Flexible fiber Faraday effect current sensor using Flint glass fiber and reflection scheme [J]. IEICE Transactions on Elec-tronics, 2000, E83 (3): 326-330.
[19]Short S X, Tselikov A A, Arruda J U, et al. Imperfect quarter-waveplate compensation in Sagnac interferome-tertype current sensors [J]. Journal of Lightwave Techn-ology, 1998, 16 (7): 1212-1219.
[20]Muller G M, Frank A, Yang L, et al. Temperature Compensation of Interferometric and Polarimetric Fiber-Optic Current Sensors with Spun Fiber[C]//26th International Conference on Optical Fiber Sensors, Wettingen, Switzerland, 2018.
[21]Tang M J, Chao J A. Study on magneto-optic balance type of optical fiber current transformer used in extra-high voltage measurement[C]//Proceedings of 3rd Conference on Measuring Technology and Mechatronics Automation, Xian, China, 2011: 491-494.
[22]Zhang H Y, Dong Y K, Leeson J, et al. High sensiti-vity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity [J]. Applied Optics, 2011, 50 (6): 924-929.
[23]Bohnert K, Gabus P, Nehring J, et al. Temperature and vibration insensitive fiber-optic current sensor [J]. Journal of Lightwave Technology, 2002, 20 (2): 267-276. 2.
[24]Bohnert K, Frank A, Yang L, et al. Polarimetric fiber-optic current sensor with integrated-optic polarization splitter [J]. Journal of Lightwave Technology, 2019, 37 (14): 3672-3678.
[25]Bohnert K, Muller G M, Yang L, et al. Intrinsic tem-perature compensation of interferometric and polarimetric fiber-optic current sensors[C]//Conference on Lasers and Electro-Optics, Baden-Dattwil, Switzerland, 2014.
[26]王来龙, 赵晓辉, 肖浩, 等. 光纤电流传感器温度补偿算法研究 [J]. 光电技术应用, 2019, 34 (1): 25-30.
Wang L L, Zhao X H, Xiao H, et al. Research on temperature compensation algorithm of fiber-optic current Sensor [J]. Optoelectronic Technology Applications, 2019, 34 (1): 25-30.
[27]杜召杰, 王辉林. 偏振调制型光纤智能电流传感器的研究 [J]. 东理工大学学报 (自然科学版), 2016, 30 (3): 46-49.
Du S J, Wang H L. Research on Polarization Modula-tion Optical Fiber Intelligent Current Sensor [J]. Journal of East China University of Science and Techn-ology, 2016, 30 (3): 46-49.
[28]Xu S Y, Li W, Xing F F, et al. Polarimetric current sensor based on polarization division multiplexing detec-tion [J]. Optics Express, 2014, 22 (10): 11985-11994.
[29]Oh M C, Lee M H, Lee H J. Polymeric waveguide polarization splitter with a buried birefringent polymer [J]. IEEE Photonics Technology Letters, 1999, 11 (9): 1144-1146.
[30]Oh M C, Seo J K, Kim K J, et al. Optical current sensors consisting of polymeric waveguide components [J]. Journal of Lightwave Technology, 2010, 28 (12): 1851-1857. 2
[31]Han K G, Kim S, Choi S S. Controllable integrated-optic polarization splitter-combiner [J]. Optics Letters, 1990, 15 (2): 108-109. 2
[32]Huang G H, Park T H, Chu W S, et al. Integrated optic polarization splitter based on total internal reflec-tion from a birefringent polymer [J]. Optics Express, 2016, 24 (18): 21012-21019.
[33]Chu W S, Heo S W, Oh M C. Polymeric integrated-optic bias chip for optical voltage transducers [J]. Jour-nal of Lightwave Technology, 2014, 32 (24): 4730-4733.
[34]Oh M C, Chu W S, Kim K J, et al. Polymer waveguide integrated-optic current transducers [J]. Optics Express, 2011, 19 (10): 9392-9400.
[35]Kim S M, Park Y H, Huang G H, et al. Bias-free optical current sensors based on quadrature interfero-metric integrated optics [J]. Optics Express, 2018, 26 (24): 31599-31606.
[36]Qian J R, Li L S. Spun Highly lineary birefringent fibers for current sensors [J]. Science in China, 1990, 33 (1): 99-107.
[37]Clarke I G. Temperature-stable spun ellipticalcore opti-calfiber current transducer [J]. Optics Letters, 1993, 18 (2): 158-160.
[38]Dong X P, Chu C B, Kong K H, et al. Phase Drift Compensation for Electric Current Sensor Employing a Twisted Fiber or a Spun Highly Birefringent Fiber [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6 (5): 803-809.
[39]Michie A, Canning J, Bassett I, et al. Spun elliptically birefringent photonic crystal fibre for current sensing [J]. Measurment Science and Technology, 2007, 18 (10): 3070-3074.
[40]Berevat R, Wong G K L, Xi M X, et al. Current sensing using circularly birefringent twisted solid-core photonic crystal fiber [J]. Optics Letters, 2016, 41 (7): 1672-1675.
[41]Zhang R, Lu H Q, Liu Y, et al. Polarizationma-intaining photonic crystal fiber based quarter waveplate for temperature stability improvement of fiber optic curr-ent sensor [J]. Journal of Modern Optics, 2013, 60 (12): 963-969.
[42]Chu W S, Kim S M, Oh M C. Integrated optic current transducers incorporating photonic crystal fiber for red-uced temperature dependence [J]. Optics Express, 2015, 23 (17): 22816-22825.
[43]Muller G M, Gu X, Yang L, et al. Inherent tempera-ture compensation of fiber-optic current sensors employ-ing spun highly birefringent fiber [J]. Optics Express, 2016, 24 (10): 11164-11173.
[44]Polynkin P, Blake J. Polarization evolution in bent spun fiber [J]. Journal of Lightwave Technology, 2005, 23 (11): 3815-3820.
[45]Gubin V P, Isaev V A, Morshnev S K, et al. Use of spun optical fibres in current sensors [J]. Quantum Electronics, 2006, 36 (3): 287-291.
[46]Przhiyalkovsky Y V, Morshnev S K, Starostin N I, et al. Propagation of polarized light in bent hi-bi spun fibres [J]. Quantum Electronics, 2015, 45 (11): 1075-1082.
[47]Przhiyalkovsky Y V, Vasiliev S A, Medvedkov O I, et al. Polarization state evolution in spun birefringent optical fibers [J]. Journal of Applied Physics, 2017, 122 (12): 1-9.
[48]Xu Z X, Yao S, Ding Z Y, et al. Accurate measure-ments of circular and residual linear birefringences of spun fibers using binary polarization rotators [J]. Optics Express, 2017, 25 (24): 30780-30792.
[49]Huang H. Passive fiber-optic polarization control elem-ent[P]. U S Patent: US5096312, 1992.
[50]刘建明, 黄勇. 特殊螺旋高双折射保椭圆光纤研究及其在电流互感器中的应用 [J]. 中国电机工程学报, 2017, 37 (12): 3621-3626.
Liu J M, Huang Y. Research on special spiral highly Birefringence ellipse maintaining Fiber and Its Applica-tion in Current Transformer [J]. Chinese Journal of Electrical Engineering, 2017, 37 (12): 3621-3626.
[51]Peng N, Huang Y, Wang S B. Fiber optic current sensor based on special spun highly birefringent fiber [J]. IEEE Photonics Technology Letters, 2013, 25 (17): 1668-1671.
[52]Kang M H, Wang Y L, Ren L Y, et al. Design of vibration-insensitive Sagnac fiber-optic current sensors using spun high-birefringence fibers [J]. Journal of Modern Optics, 2014, 61 (14): 1120-1126.
[53]周东平, 董毅. 全光纤电流传感器中电流传感光纤的抗干扰研究 [J]. 光学学报, 2017, 37 (10): 1006002.
Zhou D P, Dong Y. Research on anti-jamming of current sensing fiber in all-fiber current sensor [J]. Optical Journal, 2017, 37 (10): 1006002.
[54]Short S X, Arruda J U, Tselikov A A, et al. Elimin-ation of birefringence induced scale factor errors in the in-line Sagnac interferometer current sensor [J]. Journ-al of Lightwave Technology, 1998, 16 (10): 1844-1850.
[55]Zhang C X, Li C S, Wang X X, et al. Design principle for sensing coil of fiber-optic current sensor based on geometric rotation effect [J]. Applied Optics, 2012, 51 (18): 3977-3988.
[56]Xu S Y, Xing F F, Li W, et al. A stray current sensor based on an all-side cylindrical spiral fiber [J]. IEEE Photonics Journal, 2017, 9 (1): 6800814. |
|
|
|