|
|
Symbiosis Multi-population Particle Swarm Optimization Algorithm Based on Velocity Communication |
ZHAO Zhi-biao1,LI Rui2,LIU Bin2,ZHOU Wu-zhou2 |
1. School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
2.School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract In order to improve the accuracy and the search performance of the particle swarm optimization algorithm, symbiotic multi-population particle swarm optimization algorithm based on velocity communication(SMPSO) was proposed.The whole slave population was divided into multiple sub-populations by using the speed communication mechanism for the global search of the solution space, and the optimal state of the slave population was sent to the master population.The master population comprehensive the slave population experience and its own experience for the local deep optimization, and the best information was sent to the slave population, establishing symbiotic relationship between the master-slave population and achieving full search of the solution space.In the latter part of the iteration, the master population was combined with the adaptive mutation strategy, increasing the ability of the algorithm to jump out of the local optimum.The proposed SMPSO algorithm was applied to the benchmark function and compared with other improved PSO algorithms.The experimental results showed that the SMPSO algorithm has great improvement in solving accuracy and search ability.
|
Received: 25 July 2018
Published: 13 August 2020
|
|
|
|
|
[1]Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]// IEEE. Proceedings of the 2000 Congress on Evolutionary Computation.La Jolla, CA, 2000.
[2]曹玉莲, 李文锋, 张煜. 基于拟熵自适应启动局部搜索的混合粒子群算法[J]. 电子学报, 2018, 46(1): 110-117.
Cao Y L, Li W F, Zhang Y. Hybrid Particle Swarm Optimization Algorithm with Adaptive Starting Strategy of Local Search Based on Quasi-Entropy[J]. Acta Elec-tronica Sinica, 2018, 46(1): 110-117.
[3]陈侃松, 阮玉龙, 戴磊, 等. 区域分割的自适应变异粒子群算法[J]. 电子学报, 2017, 45(8): 1849-1855.
Chen K S, Ruan Y L, Dai L, et al. Regional Segm-entation Self-Adapting Variation Particle Swarm Optim-ization[J]. Acta Electronica Sinica, 2017, 45(8): 1849-1855.
[3]杨建红, 房怀英. 基于混合粒子群算法的涡旋体快速测量[J]. 计量学报, 2010, 31(3):208-213.
Yang J H, Fang H Y. Rapid Measurement of Scroll Profile Based on Hybrid Particle Swarm Optimization Algorithm[J]. Acta Metrologica Sinica,2010,31(3): 208- 213.
[4]孟蓉歌, 张春化, 梁继超. 改进粒子群优化-Elman算法在发动机曲轴脉宽预测中的应用[J]. 中国机械工程, 2018, 29(7): 766-770.
Meng R G, Zhang C H, Liang J C. Applications of Advanced PSO-Elman in Engine Crankshaft Pulse Width Predictions[J]. China Mechanical Engineering, 2018, 29(7): 766-770.
[5]刘浩然,崔静闯,卢泽丹,等. 一种改进的雁群扩展粒子群算法研究[J]. 计量学报, 2019, 40(3): 498-504.
Liu H R, Cui J C, Lu Z D, et al. Study on an Improved Extended PSO Algorithm Based on Geese Flight[J]. Acta Metrologica Sinica, 2019, 40(3): 498-504.
[6]毕立恒,朱彦齐. 基于分群粒子群算法的平面度误差评定研究[J]. 计量学报, 2019, 40(6): 980-985.
Bi L H, Zhu Y Q. Flatness Error Evaluation Based on Grouped Particle Swarm Optimization Algorithm[J]. Acta Metrologica Sinica, 2019, 40(6): 980-985.
[7]王跃灵,旺玥,王琪,等. 基于自适应粒子群遗传算法的柔性关节机器人动力学参数辨识[J]. 计量学报, 2020, 41(1): 60-66.
Wang Y L, Wang Y, Wang Q, et al. Dynamic Parameter Identification of Flexible Joint Robot Based on Adaptive Particle Swarm Optimization-genetic Algorithm[J]. Acta Metrologica Sinica, 2020, 41(1): 60-66.
[8]赵鹏程, 刘彬, 高伟, 等. 用于水泥熟料fCaO预测的多核最小二乘支持向量机模型[J]. 化工学报, 2016, 67(6): 2480-2487.
Zhao P C, Liu B, Gao W, et al. Multiple kernel least square support vector machine model for prediction of cement clinker lime content[J]. CIESC Journal, 2016, 67(6): 2480-2487.
[9]刘彬,赵鹏程,高伟,等. 基于粒子群算法与连续型深度信念网络的水泥熟料游离氧化钙预测[J]. 计量学报, 2018, 39(3): 420-424.
Liu B, Zhao P C, Gao W, et al. Prediction of Cement fCaO Based on Particle Swarm Optimization and Continuous Deep Belief Network[J]. Acta Metrologica Sinica, 2018, 39(3): 420-424.
[10]Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Tranbsactions on Evolutionary Computation, 2006, 10(3): 281-295.
[11]陶新民, 徐晶, 杨立标, 等. 一种改进的粒子群和K均值混合聚类算法[J]. 电子与信息学报, 2010, 32(1): 92-97.
Tao X M, Xu J, Yang L B, et al. Improved Cluster Algorithm Based on K-Means and Particle Swarm Opti-mization[J]. Journal of Electronics & Information Technology, 2010, 32(1): 92-97.
[12]Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer[C]//IEEE. Proc of IEEE Int Swarm Intel-ligence Symposium.Pasadena, USA, 2005: 124-129.
[13]刘衍民, 隋常玲, 赵庆帧. 基于K-均值聚类的动态多种群粒子群算法及其应用[J]. 控制与决策, 2011, 26(7): 1019-1025.
Liu Y M, Sui C L, Zhao Q Z. Dynamic multi-swarm particle swarm optimizer based on K-means clustering and its application[J]. Control and Decision, 2011, 26(7): 1019-1025.
[14]高云龙, 闫鹏. 基于多种群粒子群算法和布谷鸟搜索的联合寻优算法[J]. 控制与决策, 2016, 31(4): 601-608.
Gao Y L, Yan P. Unified optimization based on multi-swarm PSO algorithm and cuckoo search algorithm[J]. Control and Decision, 2016, 31(4): 601-608.
[15]Bergh F V D, Engellbrecht A P. A Coop-erative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225-239.
[16]Niu B, Zhu Y L, et al. MCPSO: A multi-swarm cooperative particle swarm optimizer[J]. Applied Mathematics and Computation, 2007, 185(2): 1050-1062.
[17]Zhang J, Ding X. A Multi-Swarm Self-Adaptive and Cooperative Particle Swarm Optimization[J]. Engine-ering Applications of Artificial Intelligence, 2011, 24(6): 958-967.
[18]Zhao S Z, Suganthan P N, Pan Q K, et al. Dynamic multi-swarm particle swarm optimizer with harmony search[C]// IEEE. The 2005 IEEE Congress on Evolutionary Computation. 2005: 522-528 .
[19]郭一楠, 刘丹丹, 程健, 等. 自适应混合变异文化算法[J]. 电子学报, 2011, 39(8): 1913-1918.
Guo Y N, Liu D D, Cheng J, et al. Adaptive Cultural Algorithm Adopting Mixed Mutation[J]. Acta Electronica Sinica, 2011, 39(8): 1913-1918.
[20]王东风, 孟丽. 粒子群优化算法的性能分析和参数选择[J]. 自动化学报, 2016, 42(10): 1552-1561.
Wang D F, Meng L. Performance Analysis and Parameter Selection of PSO Algorithms[J]. Acta Automatica Sinica, 2016, 42(10): 1552-1561.
[21]Chauhan P, Deep K, Pant M. Novel inertia weight strategies for particle swarm optimization[J]. Memetic Computing, 2013, 5(3): 229-251.
[22]Shi Y, Eberhart R C. A modified particle swarm optimizer[C]// IEEE. Proceedings of the IEEE International Conference on Evolutionary Computation. Anchorage, AK,1998: 69-73.
[23]ClercM, Kennedy J. The particle swarm-explosion, stability and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computa-tion, 2002, 6(1), 58-73.
[24]刘衍民, 牛奔. 新型粒子群算法理论与实践[M]. 北京:科学出版社, 2013.
[25]Hasanzadeh M, Meydodi M R, Ebadzadeh M M. Adaptive Parameter Selection in Comprehensive Learning Particle Swarm Optimizer[J]. Communications in Computer& Information Science, 2013, 427: 267-276. |
|
|
|