|
|
Research on Ratiometric Linearization Based High Adaptive Grating Signal Subdivision Method |
ZHAO Guo-bo,YE Guo-yong,SHI Yong-sheng,YIN Lei,LIU Hong-zhong |
School of Mechanical Engineering, Xi′an Jiaotong University, Shaanxi, Xi’an 710049, China |
|
|
Abstract Electronic subdivision is the key technology to achieving the nanometer resolution for the grating displacement sensors.And the error is caused by the subdivision method and the grating signal quality.Aiming at the limitations of real-time signal correction method in small-step measurement and some complicated working conditions, based on signal amplitude ratiometric, a new electronic subdivision linearization method is proposed from the perspective of improving the adaptability of subdivision method to non-ideal grating signals.In this way, two kinds of real-time signal compensation algorithms are constructed to further improve the linearity of the signal.Then, the principle of the proposed method is described, the error under the input of non-ideal grating signal is analyzed.And a theoretical accuracy of up to 0.003 μm and an actual accuracy of 0.08 μm are achieved.The numerical simulation and comparison experiments show that the proposed method has better adaptability to the non-ideal grating signals than the commonly used arctangent algorithm and linearization method based on the difference between the absolute values of the sine and cosine signals.
|
Received: 14 January 2019
Published: 29 June 2020
|
|
|
|
|
[1]Ye G Y, Liu H Z, Jiang W T, et al.Design and development of an optical encoder with sub-micron accuracy using a multiple-tracks analyser grating[J]. Review of Scientific Instruments, 2017, 88(1): 015003.
[2]康岩辉, 黄杨, 张恒. 长光栅动静态测量装置[J]. 计量学报, 2014, 35(z1): 11-13.
Kang Y H, Huang Y, Zhang H. Dynamic and Static Measurement System for Linear Encoders[J]. Acta Metrologica Sinica, 2014, 35(z1): 11-13.
[3]张海波, 匡也, 唐杨超. 纳米光栅动静态校准工作台[J]. 计量学报, 2018, 39(4): 465-470.
Zhang H B, Kuang Y, Tang Y C. Dynamic and static calibration of nanosensors based on macro/micro motion control[J]. Acta Metrologica Sinica, 2018, 39(4): 465-470.
[4]赵浩. 旋转角加速度传感器校准装置的研制[J]. 计量学报, 2017, 38(6): 740-743.
Zhano H. Development of Novel Calibration Device for Angular Acceleration Sensor[J]. Acta Metrologica Sinica, 2017, 38(6): 740-743.
[5]Qamar N A, Hatziadoniu C J, Wang H B.Speed error mitigation for a DSP-based resolver-to-digital converter using autotuning filters[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2):1134-1139.
[6]Al-Emadi N, Ben-Brahim L, Benammar M.A new tracking technique for mechanical angle measurement[J]. Measurement, 2014, 54(8):58-64.
[7]Benammar M, Gonzales A. A novel PLL resolver angle position indicator[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(1): 123-131.
[8]Le H T, Hoang H V, Jeon J W. Efficient method for correction and interpolation signal of magnetic encoders[C]//Proceedings of IEEE International Conference. Daejeon, South Korea, 2008: 1383-1388.
[9]Jourlin Y, Jay J, Parriaux O. Compact diffractive interferometric displacement sensor in reflection[J]. Precision Engineering, 2002, 26(1): 1-6.
[10]Pozar T, Gregorcic P, Mozina J. A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer[J]. Applied Physics B, 2011, 105(3): 575-582.
[11]Kim J A, Kim J W, Kang C S, et al.An optical absolute position measurement method using a phase-encoded signal stack binary code[J]. Review of Scientific Instruments, 2012, 83(11):115115.
[12]Sarma S, Agrawal V K, Udupa S. Software-based resolver-to-digital conversion using a DSP[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 371-379.
[13]Benammar M, Ben-Brahim L, Alhamadi M A. A high precision resolver-to-dc converter[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(6): 2289-2296.
[14]Benammar M, Ben-Brahim L, Alhamadi M A. A novel resolver-to-360 degrees linearized converter[J]. IEEE Sensors Journal, 2004, 4(1): 96-101.
[15]Benammar M. A novel amplitude-to-phase converter for sine/cosine position transducers[J]. International Journal of Electronics, 2007, 94(4): 353-365.
[16]Ye G, Liu H, Wang Y, et al.Ratiometric-linearization-based high-precision electronic interpolator for sinusoidal optical encoders[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8224-8231.
[17]Wang Y, Zhu Z, Zuo Z.A novel design method for resolver-to-digital conversion[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3724-3731.
[18]常丽.莫尔条纹纳米级细分关键技术研究[D].沈阳: 沈阳工业大学, 2013.
[19]Keem T, Gonda S, Misumi I, et al. Simple, real-time method for removing the cyclic error of a homodyne interferometer with a quadrature detector system[J]. Applied optics, 2005, 44 (17): 3492-3498.
[20]Poar T, Moina J. Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer[J]. Measurement Science and Technology, 2011, 22(8): 085301.
[21]Cheng F, Fei Y T, Fan K C.New method on real-time signal correction and subdivision for grating-based nanometrology[C]//4th International Symposium on Advanced Optical Manufacturing. Chengdu, China, 2008.
[22]Ulu E, Ulu N G, Cakmakci M. Development and validation of an adaptive method to generate high-resolution quadrature encoder signals[J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(3): 034503. |
|
|
|